

INTERNATIONAL CONFERENCE ON

DIVERSITY IN COMPUTATIONAL EXCELLENCE

30th- 31st January 2024

ABSTRACT BOOK

Organized by
Department of Computer ApplicationS
Bharathiar UniverSity
Coimbatore - 641046

**INTERNATIONAL CONFERENCE ON
DIVERSITY IN COMPUTATIONAL EXCELLENCE**

30th – 31st January 2025

Organized by

Department of Computer Applications

Bharathiar University

Coimbatore - 641046

S.NO	TITLE	Page. No.
1	THE ROLE OF AI AND ROBOTICS IN MODERN INDUSTRIAL AUTOMATION Sivaramakrishnan P and Dr. Rosa Varuna	1
2	ENHANCED PRIVACY AND SECURITY IN E-LEARNING USING HYBRID FEDERATED LEARNING Vaishnavi.N	2
3	ASSESSING VULNERABILITY AND SECURITY FLAWS IN GOVERNMENT WEBSITE Deepika R & Arumugam K	3
4	LEAF DISEASE DETECTION MODEL USING DEEP LEARNING AND EXPLAINABLE AI Priyadarshini J V & Arumugam K	4
5	SMART CONSTRUCTION PROGRESS MONITORING USING TRADITIONAL AND DEEP LEARNING ALGORITHMS WITH NEURAL NETWORKS Tamilselvi R & Arumugam K	5
6	AN EFFECTIVE MODEL ON COTTON CROP CLASSIFICATION USING CNN K Karthiga & Arumugam K	6
7	A TRUST EVALUATION ENHANCED BLOCKCHAIN – SECURED INDUSTRIAL IOT SYSTEM Saraswathi K and Dr. T. Dheepak	7
8	AI SOCIAL DISTANCING DETECTION USING ARDUINO Dr. T. Prabha and Rakshanaa. B	8
9	EMERGING TRENDS IN COMPUTER NETWORKS AND WIRELESS COMMUNICATION Kannan .K, Mohavash. S, Ragu Rudhresh. K and Dr. M. Kundalakesi	9
10	CRIMINAL EXPLOITATION ANALYZING AND SECURE SCANNING TECHNOLOGY USING QUICK RESPONSE (QR) CODES Nathiya S & Arumugam K	10
11	INTEGRATED APPROACH TO WEB SECURITY: PENETRATION TESTING WITH AUDITING Prashanth M K and Vishmithaa S P	11
12	AUTOMATING NETWORK VULNERABILITY TESTING AND REPORT GENERATION USING INFECTION MONKEY AND OPNSENSE	12

		Kalaivani P	
13	BLOCKCHAIN AND MULTI-LEVEL CLOUD SECURITY DEPLOYMENT WITH MULTI-CLOUD INTEGRATION FOR SECURE CLOUD TRANSACTIONS Aswathi R and Harshana A	14	
14	AI INTEGRATION: CHALLENGES AND SOLUTIONS FOR A BALANCED FUTURE Dr M Sindhana Devi, Lekhaharni S and Nethra Devi P	16	
15	A REVIEW ON MULTI DISCIPLINARY USAGE OF SYNTHETIC DATA GENERATION Manimuthu Paulsamy and Dr. R. Vadivel	17	
16	EMPOWERING ARTIFICIAL INTELLIGENCE IN SUSTAINABLE DEVELOPMENT Rakshun Selvaa S K	18	
17	FLOOD PREDICTION USING REGRESSION TECHNIQUES Vani Eswari K	19	
18	CROWD COUNT PREDICTION USING BOOSTING ALGORITHMS IN ADVANCED REGRESSION MODELS M.Deepadharshana and Dr.S.Vijayarani	20	
19	LEVERAGING AGRI 4.0 FOR SUSTAINABLE SOLUTIONS THROUGH IOT AND DEEP LEARNING Thiraviam K	21	
20	PRECISION AGRICULTURE FOR COCONUT FARMING: HARNESSING TECHNOLOGY TO OVERCOME MODERN CHALLENGES S.Saranya	22	
21	THE IMPACT OF CLIMATE CHANGE ON AGRICULTURE IN COIMBATORE V Mohanaashri	23	
22	ADVANCEMENTS IN AIR QUALITY PREDICTION – A COMPREHENSIVE REVIEW Jiss Kuruvilla	24	
	SOCIAL ENTREPRENEURSHIP & INNOVATION Vishali. G	25	
23	AI-DRIVEN REMOTE SENSING FOR LAND USE/LAND COVER CLASSIFICATION: A KEY ENABLER FOR ENVIRONMENTAL MONITORING f Jisha K and Dr. P. Ranjit Jeba Thangaiah	26	
24	A REAL-TIME NOISE FILTERING EAR DEVICE WITH LOW- FREQUENCY NOISE TRANSMISSION FOR HEART ATTACK PATIENTS Mohammed ashif M	27	
25	COMPARE DIFFERENT MUSIC AND VOCAL PRACTICE APPLICATION Swetha Varshinini S	28	
26	SURVEY OF ROUTING ALGORITHM IN WSN - IOT A STUDY M.Priya And D.Sasikala	29	
27	ENHANCING MEDICINAL PLANT DISEASE	30	

	IDENTIFICATION WITH ENSEMBLE LEARNING MODELS Prabha B and Dr.K.Kavitha	
28	PRESENT PATHWAY ORIENTED DELIVERY ROBOT Vinithkumar S and Saranya M	31
29	MEDICAL IMAGE DETECTION AND CLASSIFICATION OF RETINAL DETACHMENT USING TRANSFER LEARNING MODELS K. Kayathri and Dr. K. Kavitha	32
30	A COMPREHENSIVE SURVEY OF DATABASE AND DEEP LEARNING METHODS FOR CYBERSECURITY AND INTRUSION DETECTION SYSTEM Harshini U, Aparna S and Mercy C	33
31	EARLY PREDICTION OF MENTAL HEALTH ISSUES USING TRADITIONAL AND DEEP LEARNING ALGORITHMS J. Yuvarani	34
32	ANALYSIS ON SIGN LANGUAGE DETECTION USING CONVOLUTIONAL NEURAL NETWORKS Nidharsana M, Keerthi Krishna K and Moorthy K	35
33	ANALYSIS ON PATHOGEN DETECTION WITH NEXT-GENERATION SEQUENCES USING MACHINE LEARNING AND DEEP LEARNING ALGORITHMS Sumaaya S, Sashvatha and Prakalya Natarajan	36
34	DISCOVERING THE POSSIBILITIES OF GAME-BASED APPROACHES:ENGAGEMENT, LEARNING, AND MULTIDOMAIN PROBLEM SOLVING Subalakshmi O, Palanisamy S and Nandhika N S	37
35	ANALYSIS ON PLANT DISEASE AND CROP PREDICITON USING CONVOLUTIONAL NEURAL NETWORKS Sankari and Lineesha	38
36	AI-POWERED REAL-TIME WASTE CLASSIFICATION: ENHANCING SUSTAINABILITY WITH DEEP LEARNING AND FASTAPI Mahadevan B	39
37	VEHICLE THEFT INTIMATION SYSTEM USING GPS AND GSM TECHNOLOGIES Dr. P. Parvathi	40
38	FLUTTER WEBRTC SEAMLESS REAL TIME COMMUNICATION Srikumaran S & Arumugam K	41
39	FORMULA ONE: TELEMETRY-DRIVEN BRILLIANCE ON THE TRACK Kanishk S	42
40	OSTEOPOROSIS DISEASE PREDICTION USING NAÏVE BAYES ALGORITHMS Mr. T. Mathankumar and Dr. S. Vijayarani	44
41	A STUDY ON IMPACT OF SOCIAL MEDIA : ADOLESCENCE AND YOUNG AGE Mrs.S.Shanthi and Dr. R. Beulah	45

42	AI-POWERED AND DRIVEN MICRO-INVESTMENT AND SAVINGS PLATFORM: A DATA-DRIVEN APPROACH TO FINANCIAL INCLUSION Harshavartini. G. A and Bhoomika. S	46
43	A STUDY ON PRIVACY PRESERVING ANALYTICS Geethapriya J	47
44	MLIDS: COMPARATIVE INSIGHTS INTO MACHINE LEARNING FOR INTRUSION DETECTION SYSTEMS Abinaya N	48
45	ANALYSIS AND PREDICTION IN POULTRY FARMING USING DATA MINING :A COMPREHENSIVE SURVEY Divya G and Mahalakshmi E	49
46	PADDY LEAF DISEASE DETECTION USING CONVOLUTIONAL NEURAL NETWORKS Anitha B and Deepitha M	50
47	DATA ANALYTICS FOR CALCULATING THE WATER FOOTPRINT OF COCONUT TREES Banu Priya P and Kishore S	51
48	COMPREHENSIVE MULTI-BAND CLASSIFICATION AND ANALYSIS OF ASTROPHYSICAL OBJECTS USING SDSS DR18 Vaitheeswaree S and Dr. K. Geetha	52
49	SECURE IOT SYSTEM WITH FOCUS ON ENCRYPTION STANDARDS FOR DATA TRANSMISSION Prathivraj A	53
50	CRICKET SCORE PREDICTIVE ANALYSIS USING MACHINE LEARNING Sangeetha M	54
51	MODIFIED MODEL PREDICTIVE CONTROLLER USING CHAOTIC PARTICLE SWARM ALGORITHM TO RESIST ACTUATOR ATTACKS IN CYBER PHYSICAL SYSTEM A Francis Surya and Vengadesh P	55
52	FROM FABRIC TO FASHION: TREND ANALYSIS AND FORECASTING Anamika M	56
53	BRANCH PERFORMANCE AND PROFITABILITY ANALYSIS FOR NON-BANKING FINANCE COMPANIES IN TAMIL NADU Herschelle Helina A	57
54	DIAGNODRIVE: A DIY VEHICLE DIAGNOSTIC SOLUTION FOR INDIAN AUTOMOBILE OWNERS Jasin farras A	58
55	VIRTUAL REALITY MEETS THERAPY: REDEFINING MENTAL HEALTH CARE WITH AI AND DATA INSIGHTS Vidula Sri S	59
56	NBA PLAY-OFFS PREDICTION MODEL Vishal M	60
57	DEEP LEARNING MEETS DERMATOLOGY – AUTOMATED SKIN DISEASE DETECTION USING DEEP	61

	LEARNING AND COMPUTER VISION TECHNOLOGIES Devadarshini P	
58	SEASURE: ENSURING FRESHNESS IN EVERY CATCH Devadarshini P	62
59	COMPUTER NETWORKS AND WIRELESS COMMUNICATION Manikandan.S and Sujith Hariram R.M	63
60	TRANSFORMATIVE APPROACHES IN DIABETES MANAGEMENT USING NON- INVASIVE GLUCOSE MONITORING AND MACHINE LEARNING-BASED PREDICTION MODELS Vishnu Priya P	64
61	MULTICLASS THORAX DISEASE DETECTION USING CHEST X-RAY IMAGING – A SURVEY Bavya Sree C	65
62	AI SELF DRIVING CAR SIMULATION: A REVIEW Yafiyah Zenath Y	66
63	A SURVEY ON MEDICAL IMAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS: METHODS, CHALLENGES, AND APPLICATIONS Surendren D and Sumitha J	67
64	CRYPTOGRAPHY: A COMPREHENSIVE SURVEY OF TECHNIQUES, APPLICATIONS, AND FUTURE TRENDS Bhuvaneswari N	68
65	REVOLUTIONIZING ART AUTHENTICATION THROUGH CUTTING-EDGE AI TECHNOLOGIES Nakshathra.D.V and	69
66	AI EMPOWERED GRIEVANCE REDRESSAL SYSTEM FOR TAMIL SPEECH RECOGNITION Tharunika V	70
67	A COMPREHENSIVE REVIEW OF DEEP LEARNING APPLICATIONS AND ARCHITECTURES ACROSS MULTIPLE DOMAINS M. Krishnakumari	71
68	INVERSE MALWARE: EXPLORING ADVANCED THREAT BEHAVIORS AND ATTACK SCENARIOS Jokika V	72
69	RAILTALK: REAL-TIME INDIAN SIGN LANGUAGE FOR RAILWAY ANNOUNCEMENTS Sivaranjani S	73
70	ADVANCEMENTS IN CHATBOT TECHNOLOGIES FOR ENHANCED USER ENGAGEMENT AND SUPPORT Arun Kumar N	74
71	FILE INTEGRITY MONITORING USING WINDOWS POWERSHELL. Dhejitha K K	75
72	PHISHING LINK DELIVERY VIA BLUETOOTH: A COMPREHENSIVE ATTACK AND DEFENSE DEMONSTRATION	76

	Smruthi M and Akshaya lakshmi H	
73	STM32 Edge AI MICROCONTROLLER: ARCHITECTURE, APPLICATIONS, AND FUTURE DIRECTIONS Nithasakthi K	77
74	BIOINFORMATIC ANALYSIS OF THE GENE TP53 AND KRAS IN LUNG CANCER Janani	78
75	COMPARATIVE ANALYSIS OF ADVANCED TIME SYNCHRONIZATION PROTOCOLS IN WIRELESS SENSOR NETWORKS V.T.Keerthanasi	79
76	QR-CODE BASED VISITOR MANAGEMENT SYSTEM FOR PSGRKWC. Dr R Jeevitha	81
77	ANALYSIS ON AUGMENTED AND VIRTUAL REALITY IN EDUCATIONAL TECHNOLOGY Ashitha Musthafa & Arumugam K	82
78	SMART SORTING CLASSIFICATION OF FRESH AND ROTTEN FRUITS Midhunesh G	83
79	BUILDING GENE NETWORKS FOR RHEUMATOID ARTHRITIS AND OSTEOARTHRITIS SYNOVIAL MICROARRAY DATASET AND DISCOVERING INTERACTED SIGNIFICANT GENES APPLYING MACHINE LEARNING Saranya V and Dr.K.Geetha	84
80	DOMAIN NAME SYSTEM (DNS) DEPLOYMENT WITH BIND COMMAND Dr.V.Deepa	85
81	PREDICTIVE ANALYTICS IN SOCIAL MEDIA AND WEBSITES: FORECASTING TRENDS AND INFLUENCER IMPACT Shylaja S and Dr.T.Revathi	86
82	AN IOT-BASED INTELLIGENT SYSTEM FOR MONITORING HYDROPONIC FARMS DR.G.Sangeetha	87
83	FORTIFYING HEALTHCARE SYSTEMS: THE CRITICAL ROLE OF CYBERSECURITY IN PROTECTING PATIENT DATA F.Fadhl Hameed	88
84	SECURING THE SKIES: ADVANCING CYBERSECURITY MEASURES TO SAFEGUARD AVIATION SYSTEMS AND OPERATIONS Srivatsan V	89
85	CYBERSECURITY IN DEFENSE: SECURING MILITARY NETWORKS Jaiganesh M	90
86	COMBINING CYBER OPERATIONS WITH AIRFORCE STRATEGIES: CHALLENGES AND OPPORTUNITIES	91

		Rohith Raja K	
87	TASKFOCUS: ENHANCING ACADEMIC PERFORMANCE USING MACHINE LEARNING TO REDUCE PROCRASTINATION V. Jalaja Jayalakshmi and Dr. M. Punithavalli		92
88	DIGITAL PROTECTION MECHANISMS IN GAMING AND FILM INDUSTRIES: A COMPREHENSIVE ANALYSIS OF TECHNIQUES AND CHALLENGES Sambath T		93
89	EXPLORING AWS IDENTITY AND ACCESS MANAGEMENT FOR SECURE CLOUD OPERATIONS Ms. Anjana G B		94
90	STUDY OF AXIN2 IN COLORECTAL CANCER USING BIOINFORMATIC APPROACH AND DOCKING ANALYSIS WITH THE COMPOUNDS OF NYCTANTHES ARBOR-TRISTIS. Sathya Trisha S		95
91	IMPACT OF BIG DATA ANALYTICS ON HEALTHCARE TRANSFORMATION S.Sapna		96
92	A COMPREHENSIVE REVIEW ON SECURE PERSONALLY IDENTIFIABLE INFORMATION (PII) HANDLING Adhan A		97
93	ADVANCING HEALTHCARE WITH R PROGRAMMING: TRANSFORMATIVE APPLICATIONS IN DATA ANALYSIS AND DECISION SUPPORT Atiang Akinyi Hellen		98
94	AI-DRIVEN CYBERSECURITY: A COMPREHENSIVE REVIEW OF INNOVATIONS AND CHALLENGES P. Pillappan and Dr. M. Punithavalli		99
95	EXPLORING THE NEURAL PROCESSING UNIT (NPU): ARCHITECTURE, APPLICATIONS, AND FUTURE PROSPECTS Vaishnavi and Srikanth R G		100
96	EXPLORATORY DATA ANALYSIS FOR MOVIES REVIEW DATASET Dr.A.Adhiselvam, S.Kavin and S.Varun		101
97	FILTERING POLITICAL SENTIMENT IN SOCIAL MEDIA USING TEXTUAL INFORMATION Dhivya M, Kavitha S and Keerthana G		102
98	ARTIFICIAL INTELLIGENCE IN EVERYDAY LIFE Harini G, Chittesh.K and Dhanush R		104
99	DIGITAL TWIN WITH AI INTEGRATION Dr. Sophia Reena		105
101	FAKE NEWS DETECTION USING MACHINE LEARNING Dr.S. Nithya		106
102	DIVERSITY IN COMPUTATIONAL EXCELLENCE K.Priyadarshini		107

PRECISION AGRICULTURE FOR COCONUT FARMING: HARNESSING TECHNOLOGY TO OVERCOME MODERN CHALLENGES

Mrs.S.Saranya, Assistant Professor, Department of Computer Science with AI and ML
Nallamuthu Gounder Mahalingam College, Pollachi Tamilnadu, India.
saranyashana21@gmail.com.

(25ICDCE082)

The integration of advanced technology and predictive models can significantly enhance precision agriculture, especially for coconut farming. As the agricultural landscape evolves, challenges such as climate change, pest infestations, and soil degradation demand more innovative solutions. One way to address these challenges is by combining predictive models with modern technologies such as drones, satellite imaging, and Internet of Things (IoT) devices. These tools can collect vast amounts of real-time data, which can be used to inform decisions and improve farming practices. To further refine these models and ensure their effectiveness, it is crucial to incorporate a variety of data inputs beyond traditional metrics. This includes data on insect populations, soil microbiomes, and long-term climate patterns. By integrating these diverse data sources, predictive models can offer more accurate insights into potential risks and opportunities, helping farmers make better informed decisions. For coconut farmers, this approach can lead to more resilient farming practices, optimized resource use, and enhanced sustainability. Additionally, it can improve the financial feasibility of coconut farming by reducing losses from pests, diseases, and climate variability. Ultimately, leveraging these modern technologies and predictive models will ensure the long-term health of coconut crops and support the livelihoods of farming communities, creating a more sustainable and economically viable future for coconut agriculture.

Keywords: Advanced technology, Predictive models, Soil degradation, Drones, Satellite imaging.

Precision Agriculture for Coconut Farming: Harnessing Technology to Overcome Modern Challenges

Mrs.S.Saranya, Assistant Professor,
Department of Computer Science with AI and ML
Nallamuthu Gounder Mahalingam College, Pollachi
Tamilnadu, India.
saranyashana21@gmail.com, 9443620544

Abstract

The integration of advanced technology and predictive models can significantly enhance precision agriculture, especially for coconut farming. As the agricultural landscape evolves, challenges such as climate change, pest infestations, and soil degradation demand more innovative solutions. One way to address these challenges is by combining predictive models with modern technologies such as drones, satellite imaging, and Internet of Things (IoT) devices. These tools can collect vast amounts of real-time data, which can be used to inform decisions and improve farming practices. To further refine these models and ensure their effectiveness, it is crucial to incorporate a variety of data inputs beyond traditional metrics. This includes data on insect populations, soil microbiomes, and long-term climate patterns. By integrating these diverse data sources, predictive models can offer more accurate insights into potential risks and opportunities, helping farmers make better-informed decisions. For coconut farmers, this approach can lead to more resilient farming practices, optimized resource use, and enhanced sustainability. Additionally, it can

improve the financial feasibility of coconut farming by reducing losses from pests, diseases, and climate variability. Ultimately, leveraging these modern technologies and predictive models will ensure the long-term health of coconut crops and support the livelihoods of farming communities, creating a more sustainable and economically viable future for coconut agriculture.

Keywords: Advanced technology, Predictive models, Soil degradation, Drones, Satellite imaging.

I. INTRODUCTION

The integration of advanced technologies and predictive models in agriculture has revolutionized the way farmers approach to crop management. In particular, the application of these innovations in coconut farming presents a promising avenue for addressing the many challenges farmers face today. Coconut farming, an essential economic activity in many tropical regions, is confronted by numerous issues such as climate change, pest infestations, and soil degradation. As the global climate continues to change, these challenges are expected to intensify, making it crucial to adopt modern

technologies and data-driven solutions to sustain productivity and ensure the future viability of the coconut industry.

Precision agriculture, which leverages cutting-edge technologies such as drones, satellite imaging, and Internet of Things (IoT) devices, enables farmers to gather real-time, high-resolution data. This data can be analyzed through predictive models to offer insights into potential risks and opportunities. The integration of diverse data inputs, such as insect populations, soil microbiomes, and climate patterns, helps refine these models, making them more accurate and effective for addressing complex agricultural issues. The goal is not just to improve yields but also to promote sustainability, optimize resource usage, and reduce the financial risks associated with farming.

II. PROBLEM STATEMENT

Coconut farming faces challenges in predicting crop yield, detecting diseases early, and optimizing harvesting times due to fluctuating environmental conditions, varying soil quality, and inconsistent farming practices. These uncertainties lead to inefficient resource management and lower productivity. Developing a predictive model using machine learning can help forecast outcomes like yield, disease risk, and harvest timing, enabling farmers to make more informed decisions.

To integrate a machine learning-based predictive model into coconut farming, data such as weather patterns, soil conditions, pest reports, and historical yields should be collected. Machine learning algorithms like Random Forest, Support Vector Machines, or Neural Networks can then be trained on this data to forecast outcomes. The model can be deployed via a mobile app or web platform, providing farmers with real-time predictions and recommendations for optimal farming practices, irrigation schedules, and pest management strategies, ultimately improving efficiency, productivity, and sustainability in coconut farming.

III. METHODOLOGY

The integration of advanced technologies and Integrate predictive models in coconut farming represents a dynamic and evolving field of study. This research aims to explore the potential of combining cutting-edge technologies such as drones, satellite imaging, Internet of Things (IoT) devices, and machine learning algorithms to enhance coconut farming practices, focusing on improving sustainability, resilience, and financial viability. The research scope encompasses a variety of dimensions, including data collection methods, predictive modelling techniques, and practical applications for farmers.

Data Collection Methods: Drones: High-resolution aerial imagery collected

from drones will provide valuable insights into crop health, pest infestations, and areas of water stress. Drones can also be used for mapping large coconut plantations and identifying issues that require intervention. Satellite Imaging: Satellite data, including multi-spectral and hyper-spectral imagery, will be used to assess environmental factors affecting coconut crops, such as vegetation health, soil moisture levels, and temperature fluctuations. Satellite images offer large-scale monitoring, making them valuable for assessing regional or large plantation areas. IoT Sensors: IoT devices, including soil moisture sensors, temperature sensors, and climate monitoring systems, will collect real-time data that can be integrated into predictive models. These sensors enable continuous monitoring of environmental conditions, ensuring timely interventions based on data-driven insights.

A. Integrate Predictive Modelling Techniques

To integrate predictive models in a coconut farm using machine learning (ML) algorithms, we need to build and combine multiple machine learning models that predict various aspects of farm management, such as pest control, irrigation requirements, fertilization, and harvest timing. Data Collection and Pre-processing: Data will be collected from multiple sources, such as IoT sensors, drones, satellites, and weather stations. The data types might include soil

moisture, temperature, humidity, pest levels, historical crop yields, and other environmental factors. Key Features: Environmental Data: Temperature, humidity, rainfall, wind speed (from weather stations or satellites). Soil Data: Moisture levels, pH, temperature (from IoT sensors). Plant Health Data: Pest infestations, diseases, and growth patterns (from drone images or sensor data). Historical Data: Past harvest times, pest outbreaks, irrigation schedules, etc.

Pre-processing Steps: Cleaning: Handle missing values, remove outliers. Normalization: Scale numerical features (e.g., temperature, moisture levels) to the same range. Feature Engineering: Extract relevant features from the raw data (e.g., daily average temperature, soil moisture trends). Develop Predictive Models: Each predictive model addresses a specific aspect of farm management.

Pest Control Prediction: Model: Random Forest Classifier / Support Vector Machine (SVM). Input Features: Environmental conditions (temperature, humidity), historical pest infestation data, plant health data (from drone images). Output: Likelihood of pest outbreaks (binary classification: pest outbreak or not).

Algorithm

```
from sklearn.ensemble import
RandomForestClassifier
from sklearn.model_selection import
train_test_split
```

```

from sklearn.metrics import accuracy_score

# Prepare data

X = features # input features: temp,
humidity, pest history, plant health
y = labels # output labels: pest
outbreak (1) or not (0)

# Train Random Forest Classifier
model = RandomForestClassifier(n_estimators
=100)
model.fit(X_train, y_train)

# Predict pest outbreaks
y_pred = model.predict(X_test)

# Evaluate accuracy
accuracy = accuracy_score(y_test,
y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")

```

Irrigation Requirement Prediction

Model: Random Forest Regressor. Input Features: Soil moisture, temperature, rainfall forecast, historical irrigation data. Output: Recommended amount of water for irrigation.

Algorithm

```

from sklearn.ensemble import
RandomForestRegressor

from sklearn.model_selection import
train_test_split

```

```

from sklearn.metrics import
mean_squared_error

# Prepare data

X = features # input features: soil
moisture, temp, rainfall, irrigation
history
y = target # output target: irrigation
amount (liters)

# Train Random Forest Regressor
model = RandomForestRegressor(n_estimators
=100)
model.fit(X_train, y_train)

```

Predict irrigation requirements

```
y_pred = model.predict(X_test)
```

Evaluate performance

```

mse = mean_squared_error(y_test,
y_pred)
print(f"Mean Squared Error:
{mse:.2f}")

```

Fertilization Requirement Prediction: Model: Gradient Boosting Machines (GBM). Input Features: Soil nutrient levels, pH, soil moisture, temperature, coconut tree growth stage. Output: Recommended type and amount of fertilizer.

Algorithm

```

from sklearn.ensemble import
GradientBoostingRegressor

```

```

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error

# Prepare data

X = features # input features: soil nutrients, pH, temp, tree growth stage
y = target # output target: fertilizer amount (kg)

# Train Gradient Boosting Regressor

model = GradientBoostingRegressor(n_estimators=100)
model.fit(X_train, y_train)

# Predict fertilization requirements

y_pred = model.predict(X_test)

# Evaluate performance

mae = mean_absolute_error(y_test, y_pred)
print(f"Mean Absolute Error: {mae:.2f}")

```

Harvest Timing Prediction: Model: Long Short-Term Memory (LSTM) Neural Network. Input Features: Historical harvest times, plant growth data, climate data (e.g., temperature, rainfall). Output: Optimal harvest time (days until harvest).

Algorithm

```

from tensorflow.keras.models import Sequential

```

```

from tensorflow.keras.layers import LSTM, Dense
from sklearn.preprocessing import MinMaxScaler

# Prepare data

scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(features) # normalize the features
y_scaled = scaler.fit_transform(target.reshape(-1, 1)) # normalize the target

# Reshape input data for LSTM

X_scaled = X_scaled.reshape((X_scaled.shape[0], X_scaled.shape[1], 1))

# Define LSTM model

model = Sequential()
model.add(LSTM(64, activation='relu',
               input_shape=(X_scaled.shape[1], 1)))
model.add(Dense(1)) # Output: number of days until harvest
model.compile(optimizer='adam', loss='mean_squared_error')

# Train the LSTM model

model.fit(X_scaled, y_scaled, epochs=50, batch_size=32)

# Predict harvest time

y_pred = model.predict(X_scaled)

```

```
# Evaluate prediction
    print(f"Predicted harvest time:
    {y_pred[-1][0]:.2f} days")
```

B. Integrating the Models

Once we have separate models for pest control, irrigation, fertilization, and harvest timing, we need to integrate their predictions into a unified decision-making system. Integration Process: Prediction Fusion: Combine the predictions of individual models to generate a holistic farm management recommendation. Optimization Layer: Use optimization algorithms (e.g., genetic algorithms or linear programming) to determine the best action considering multiple factors (pest control, irrigation, fertilization, and harvest timing).

For instance: If the pest prediction model suggests a pest outbreak and the irrigation model predicts that water is needed, the system may recommend applying pest control first and then irrigating the affected fields. If the harvest prediction model suggests a crop is ready for harvest soon and fertilization is needed to boost yield, the system can suggest fertilization prior to harvest.

Pseudo code for Integration

```
# Sample integrated decision-making system
# Predict pest outbreak (0 = no, 1 = yes)
pest_prediction = pest_model.predict(current_conditions)
```

```
# Predict irrigation need (liters of water)
irrigation_prediction = irrigation_model.predict(current_conditions)

# Predict fertilization need (kg of fertilizer)
fertilization_prediction = fertilization_model.predict(current_conditions)

# Predict harvest time (days)
harvest_prediction = harvest_model.predict(current_conditions)

# Integrated decision: based on the predictions
if pest_prediction == 1:
    print("Apply pest control to fields X and Y.")
if irrigation_prediction > 0:
    print(f"Water fields A and B with {irrigation_prediction} liters.")
if fertilization_prediction > 0:
    print(f"Fertilize field Z with {fertilization_prediction} kg of fertilizer.")
if harvest_prediction < 5:
    print(f"Harvest field W in {harvest_prediction} days.")
```

Optimization for Resource Allocation: To optimize resource usage (water, fertilizers, and pesticides) across the farm, we can use optimization algorithms. For example,

Genetic Algorithms can be used to find the optimal combination of pest control, irrigation, fertilization, and harvest timing that maximizes yield while minimizing resource usage.

Example Optimization (using genetic algorithms)

```
Import random
```

```
# Example: genetic algorithm for optimizing
resource usage
```

```
def fitness_function(action_plan):
```

```
# Define a fitness function that returns a
score based on action plan (e.g., maximizing
yield while minimizing cost).
```

```
    return yield_score(action_plan) -
cost_score(action_plan)
```

```
def genetic_algorithm():
```

```
population = initialize_population()
```

```
for generation in range(num_generations):
```

```
    fitness_scores= [fitness_function(individual)
for individual in population]
```

```
    selected_parents = select_parents(population,
fitness_scores)
```

```
    offspring = crossover(selected_parents)
```

```
    population = mutate(offspring)
```

```
    return best_solution(population)
```

```
best_plan = genetic_algorithm()
```

```
print("Optimal action plan:", best_plan
```

C. Integrate Predictive Modeling Benefits in Coconut Farming

Table 1: Integrate Predictive Modeling Benefits

Aspect	Predictive Model	Integrating Predictive Models
Scope	Focuses on predicting a single outcome.	Combines multiple predictions to provide holistic recommendations.
Complexity	Relatively simple, addressing one problem.	More complex, involving multiple models working together.
Output	A single prediction (e.g., pest outbreak, irrigation need).	Multiple predictions combined into a comprehensive solution (e.g., irrigation, fertilization, pest control).
Use Case	Solving a specific problem (e.g., pest control).	Solving complex, multi-faceted problems (e.g., overall farm management).
Example	Predicting pest infestation based on climate.	Combining pest prediction, irrigation needs, and fertilizer recommendations.

VI. RESULT

The integration of advanced technology and predictive models, farmers can make more informed decisions, reduce crop losses, and improve the efficiency of their operations. This technological integration not only strengthens coconut farming against environmental threats but also ensures the long-term viability of the industry by supporting financial stability and creating more sustainable farming practices.

A. Accuracy of Predictive Models

Increased Precision: By integrating a variety of data sources and using machine learning algorithms, the accuracy of predictions regarding pest outbreaks, crop health, and climate-related risks can improve significantly.

Real-Time Adaptability: The predictive models can update in real-time as new data is collected, allowing farmers to adapt quickly to any unexpected changes.

Long-Term Accuracy: Over time, the models can become more accurate as they learn from past data; improving predictions and helping farmers make better long-term decisions.

The integration of these modern technologies and predictive models promises to provide a holistic, data-driven approach that will lead to more resilient and economically viable coconut farming practices, ensuring a sustainable future for the industry.

V.CONCLUSION

By using machine learning algorithms to build predictive models for pest control, irrigation, fertilization, and harvest timing, and integrating them into a unified decision support system (DSS), coconut farmers can receive data-driven recommendations that optimize farm operations. The integration of multiple models and optimization algorithms helps provide holistic, actionable insights that improve yield, reduce resource wastage, and increase profitability. This approach allows the system to adapt to changing conditions, continuously improve through feedback loops, and provide farmers with practical, real-time advice on how to manage their farms efficiently.

ACKNOWLEDGEMENT

This paper has been published using the V Cycle Seed Money support for this research granted by the Management of Nallamuthu Gounder Mahalingam College (Autonomous), Pollachi.

REFERENCES

- [1] Oliveira, J., & Pires, D. The role of precision agriculture in improving coconut farming practices. *Agriculture and Technology*, 16(2), 120-135.2024.
- [2] Li, X., & Zhang, Y. IoT-based irrigation systems for water efficiency in coconut farming. *Smart Agriculture Journal*, 30(1), 78-89. 2024.
- [3] Patel, S., & Rathi, S. Machine learning

applications for pest prediction in coconut farming. *AI in Agriculture Journal*, 5(1), 34-46. 2024.

[4] Kumar, R., & Singh, P. The impact of climate change on coconut farming and adaptation strategies. *Journal of Climate Adaptation*, 8(1), 145-159. 2024.

[5] Barlow, R., & Wright, D. Application of satellite imagery in pest management for coconut farms. *Remote Sensing for Agriculture*, 22(4), 102-118. 2023.

[6] Anderson, A., & Barros, J. Precision agriculture in coconut farming: Monitoring soil moisture and fertility. *Agricultural Science and Technology*, 45(3), 56-72. 2023.

[7] Kuo, S., & Lee, F. Utilizing drones for crop health monitoring in coconut plantations. *Drones in Agriculture*, 11(2), 101-115. 2023.

[8] Patel, M., & Gupta, S. Big data analytics for predicting coconut crop yield and harvest timing. *Agriculture and Data Science*, 19(4), 200-213. 2023.

[9] Hernandez, C., & Jackson, L. (2023). Automated pest management systems in coconut farming using AI technologies. *Agricultural Automation Review*, 10(3), 88-95. 2023.

[10] Fernandes, T., & Silva, R. (2023). Precision farming techniques for soil nutrient optimization in coconut farms. *Precision AgriTech*, 17(4), 25-40.

[11] Singh, R., et al. "Smart Agriculture System using IoT and Machine Learning for Coconut Plantation." *Smart Agricultural Technologies*, 16(4), 231-243. 2022.

[12] Sivapragasam, A., et al. "Machine Learning Approaches for Coconut Crop Monitoring." *Agricultural Systems Research*, 12(2), 79-85. 2021

[13] Sundararajan, R., et al. "Blynk-Based Mobile Application for Remote Farm Management in Coconut Farming." *Mobile Computing and Smart Farming Journal*, 5(1), 15-22. 2021.

[14] Rout, M., et al. "IoT-based Monitoring System for Precision Agriculture: A Case Study on Coconut Farming." *International Journal of Computer Applications*, 178(6), 34-40. 2020.

[15] Zhao, Y., et al. "Mobile Application Integration with IoT for Agricultural Applications." *Journal of Mobile Technology in Agriculture*, 8(2), 52-58. 2020.

[16] S. P. Sahu et al., "Machine learning applications in agriculture," *International Journal of Agricultural Science*, 2019.

[17] Kumar, A., et al. (2019). "Applications of Machine Learning in Precision Agriculture." *Journal of Agriculture and Food Research*, 1(2), 105-112. 2019.

[18] K. S. S. Subramanian et al., "IoT-based smart agriculture monitoring system," *International Journal of Computer Applications*, 2018.