(BIRAO Uy, %,

€ MAHAR
g
\Y
Oxyg 0™

T ——
aed B g=w
Estd. 1949
Journal of

The Maharaja Sayajirao University of Baroda

Aertificate of Publication

]

Certificate of publication for the article titled:

STATIC AND DYNAMIC ROUTING PROTOCOLS FOR WIRELESS NETWORKS: AN
EFFECTIVE APPROACH

Authored by

Dr. R. Jayaprakash
Assistant Professor, Department of Computer Science,
Nallamuthu Gounder Mahalingam College, Pollachi, Coimbatore

Volume No .55 No.1(XI) 2021
in

Journal of The Maharaja Sayajirao University of Baroda

ISSN : 0025-0422

(UGC CARE Group I Journal)




Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422
STATIC AND DYNAMIC ROUTING PROTOCOLS FOR WIRELESS NETWORKS: AN
EFFECTIVE APPROACH

Dr. R. Jayaprakash, Assistant Professor, Department of Computer Science,
Nallamuthu Gounder Mahalingam College, Pollachi, Coimbatore:: jpinfosoft@gmail.com

ABSTRACT

The routing protocol area allows you to check the optimum path for digital communication
between network nodes. Routers use them to share routing information with alternative routers to
with dynamism build global routing tables. Link-state protocols don't “route by rumor.” Instead,
routers send updates advertising the state of their links (a link may be a directly-connected network).
All routers apprehend the state of all existing links among their locus, and store this info in an
exceedingly topology table. A distance-vector routing protocol begins by advertising directly-
connected networks to its neighbors. These updates area unit sent often (RIP — each thirty seconds;
IGRP — each ninety seconds). Neighbors can add the routes from these updates to their own routing
tables. Every neighbor trusts this information fully, and can forward their full routing table
(connected and learned routes) to each alternative neighbor. Thus, routers absolutely and blindly
think about neighbors for route info, a plan referred to as routing by rumor.

Keywords: RIP, IGRP, Router, IGP, EGP, and Links.

I. INTRODUCTION
The zone unit of routing  protocols  used to check the most advantageous channel for  electronic
communication between network nodes. Routers use them to contribute to routing data with
alternative routers to dynamically build international routing tables. The routing protocols area unit
engaged once your organization’s network grows to the purpose wherever static routes area unit
unmanageable. Fashionable enterprise networks would like dynamic routing tables that mechanically
change if there are a unit any traffic or topology changes.

Il. DIFFERENT TYPES OF ROUTING PROTOCOLS
There square measure 2 major categories of routing protocols: Exterior entryway Protocol (EGP) and
Interior entryway Protocol (IGP). EGP is employed to exchange routing info between autonomous
systems. as an example, EGP is employed in knowledge transfers between ISPs (Internet Service
Providers) to ISPs or between autonomous systems to ISPs. Whereas, IGP (Interior entryway
Protocol) is employed for exchanging routing info between routers at intervals associate degree
autonomous system, like knowledge transfers at intervals your organization’s native space network
(LAN). IGP are often additional classified into 2 categories: Distance-Vector and Link-State Routing
Protocols.
Distance-Vector Routing Protocols, routers communicate with neighboring routers, sporadically
informing them regarding topology changes.
Whereas in link-state routing protocol, routers produce a roadmap of however they're connected
within the network. By calculative the simplest path from that router to each potential destination
within the network, link state routing protocols type the routing table. RIP (Routing info Protocol),
RIPv2, IGRP (Interior Gateway Routing Protocol), and EIGRP (Enhanced IGRP) square measure a
part of Distance-Vector Routing Protocols. However, OSPF (Open Shortest Path First) and 1S-1S
(Intermediate System to Intermediate System) square measure a part of Link-State Routing
Protocols.
Table 1: Nature of Routing Protocols

Nature of Routing Protocols

Exterior Gateway .

Protocols (EGP) Interior Gateway Protocols (IGP)
Border Gateway Distance — Vector Link — State
Protocol (BGP) RIP | IGRP | EIGRP | OSPF|  IS—1S

Volume-55, No.1(XI) 2021 47


mailto:jpinfosoft@gmail.com

Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

IHHLLSTATIC VS. DYNAMIC ROUTING

There are two basic methods of building a routing table:

+ Static Routing - Stable

« Dynamic Routing — Occurrence of change at run time
A static (stable) routing table is formed, maintained, and updated by a network administrator,
manually. A static route each to each network should be organized on every router for full property.
This provides a granular level of management over routing, however quickly becomes impractical on
massive networks. Routers won't share static routes with one another, so reducing CPU/RAM
overhead and saving information measure. However, static routing isn't fault-tolerant, as any
modification to the routing infrastructure (such as a link happening, or a replacement network added)
needs manual intervention. Routers operational during a strictly static setting cannot seamlessly
select a much better route if a link becomes unavailable. Static routes have Associate Degree body
Distance (AD) of one, and so square measure continuously most well-liked over dynamic routes,
unless the default AD is modified. A static route with associate degree adjusted AD is termed a
floating static route, and is roofed in bigger detail in another guide.
A dynamic (change) routing table is formed, maintained, and updated by a routing protocol running
on the router. Samples of routing protocols embody RIP (Routing information Protocol), EIGRP
(Enhanced Interior Gate-way Routing Protocol), and OSPF (Open Shortest Path First). Specific
dynamic routing protocols square measure lined in nice detail in different guides. Routers do share
dynamic routing info with one another that will increase processor, RAM, and information measure
usage. However, routing protocols square measure capable of dynamically selecting a special (or
better) path once there's a modification to the routing transportation. Don’t confuse routing protocols
with routed protocols:

1. A routed protocol may be a Layer three protocol that applies logical addresses to devices and
routes information between one or a lot of networks (such as net Protocol)
2. A routing protocol dynamically builds the network, topology, and next hop info in routing
tables (such as RIP, EIGRP, etc.)

The following briefly outlines the pros and cons of static routing:
Static Routing- Advantages

* Minimal CPU/Memory overhead

* No bandwidth overhead (updates are not shared among routers)

« Granular control on how traffic is routed
Static Routing- Disadvantages

 Infrastructure changes must be manually adjusted

* No “dynamic” fault tolerance if a link goes down

» Impractical on large network
The following briefly outlines the advantages and disadvantages of dynamic routing:
Advantages of Dynamic Routing

« Simpler to configure on larger networks

«  Will dynamically choose a different (or better) route if a link goes down

» Ability to load balance between multiple links
Disadvantages of Dynamic Routing

» Updates are shared between routers, thus consuming bandwidth

* Routing protocols put additional load on router CPU/RAM

* The choice of the “best route” is in the hands of the routing protocol, and not the network

administrator
DYNAMIC ROUTING CATEGORIES

There are two distinct types of dynamic routing protocols:

+ Distance-vector protocols

» Link-state protocols

Volume-55, No.1(XI) 2021 48



Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Examples of distance-vector protocols include RIP and IGRP. Examples of link-state
protocols include OSPF and IS-IS. EIGRP exhibits both distance-vector and link-state
characteristics, and is considered an amalgam protocol.

IV. LINK-STATE ROUTING PROTOCOLS
Link-state routing protocols were developed to alleviate the convergence and loop issues of
distance-vector protocols. Link-state protocols maintain three separate tables:
* Neighbor table — contains a list of all neighbors, and the interface each neighbor is connected
off of. Neighbors are formed by sending packets.
» Topology table — otherwise known as the “link-state” table, contains a map of all links within
an area, including each link’s status.
» Shortest-Path table — contains the finest routes to each particular destination (otherwise known
as the “routing” table”)
Link-state protocols do not “route by rumor.” Instead, routers send updates advertising the state of
their links (a link is a directly-connected network). All routers know the state of all existing links
within their region, and store this information in a topology table. All routers within an area have
indistinguishable topology tables. Table 2 displays the characteristics of link-state protocols.
Table 2: Link-State Protocol Summary

Individuality Explanation

Only when changes occur. OSPF, for example, also sends all
summary information every 30 minutes by default.

Periodic updates

Broadcast Only devices running routing algorithms listen to these updates.
updates Updates are sent to a multicast address.
A database contains all topological information from which an IP
Database : .
routing table is assembled.
Algorithm Dijkstra Algorithm for OSPF.
Convergence Updates are faster and convergence times are reduced.
CPU/memory Higher CPU and memory requirements to maintain link-state
databases.
Examples OSPF and IS-IS.

Link-state protocols don't “route by rumor.” Instead, routers send updates advertising the state of
their links (a link may be a directly-connected network). All routers grasp the state of all existing
links at intervals their region, and store this data in an exceedingly topology table. All routers at
intervals a neighborhood have indistinguishable topology tables. Table 2 displays the characteristics
of link-state protocols.

The best route to every link (network) is keep within the routing (or shortest path) table. If the state
of a link changes, like a router interface failing, an advert containing solely this link-state
modification are going to be sent to any or all routers at intervals that space. Every router can change
its topology table consequently, and can calculate a replacement best route if needed. By maintaining
uniform topologies table among all routers at intervals a neighborhood. Link-state protocols will
converge terribly quickly and square measure un-attackable to routing loops. Additionally, as a result
of updates square measure sent solely throughout a link-state modification, and contain solely the
modification (and not the total table), link-state protocols square measure less information measure
intensive than distance-vector protocols. However, the 3 link-state tables utilize a lot of RAM and
electronic equipment on the router itself. Link-state protocols utilize some variety of price,
sometimes supported information measure, to calculate a route’s metric. The Dijkstra formula is
employed to see the shortest path.

Volume-55, No.1(XI) 2021 49



Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

DIJKSTRA'S ALGORITHM
The reason why BFS doesn't work for weighted graphs is extremely easy we will not guarantee that
the vertex at the front of the queue is that the vertex nearest to s. it's definitely the nearest in terms of
the amount of edges wont to reach it, however not in terms of edge weights. However we will fix this
simply. Rather than employing a plain queue, able to use a priority queue during which vertices are
sorted by their increasing distt[ ] price. Then at every iteration, we are going to decide the vertex, u,
with smallest distt[u] price and decision relax(u, v) on all of its neighbors, v. the sole distinction is
that currently we have a tendency to add the burden of the sting (u, v) to our distance rather than
simply adding one.
bool relax( int u, intv)
{
int newDistt = distt[u] + weight[u][Vv];
if( distt[v] <= newDistt ) return false;
distt[v] = newDistt;
return true;

}

The proof of correctness is strictly constant as for BFS - constant loop invariant holds. However, the
rule solely works as long as we have a tendency to don't have edges with negative weights.
Otherwise, there's no guarantee that after we decide u because the nearest vertex, distt[v] for a few
alternative vertex v won't become smaller than distt[u] at it slow within the future.

Algorithm1:
O(n?+(m-+n)log(n)) Dijkstra’s
int graph[128][128]; // -1 means “no edge”
int n; // number of vertices (at most 128)
int distt[128];
/ICompares 2 vertices first by distance and then by vertex number
struct ItDistt {
Bool operator() (int u,int v) const {
return make_pair(distt[u],u)<make_pair(distt[v],v);

}

void dijkstra(int s)
{
for(int i=0;i<n;i++)distt[i]=INT_MAX;
distt[s]=0;
set<int,ItDistt>q;
g.insert(s);
while(!g.empty()) {
int u="g.begin();// like u=q.front()
g.erase(qg.begin());// like q.pop()
for(int v=0;v<n;v++)
if(graphfu] [v]! = -1) {
Int newDistt=distt[u] +graph[u][Vv];
If(newDistt < distt[v]) //relaxation
{
If(g.count(v))q.erase(v);
Distt[v] = newDistt;
g.insert(v));
}
}
Volume-55, No.1(XI) 2021 50



Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

}
}

There square measure multiple ways that to implement Dijkstra's rule. the most challenge is
maintaining a priority queue of vertices that has three operations —inserting new vertices to the
queue, removing the vertex with smallest distt[], and decreasing the distt[] worth of some vertex
throughout relaxation. We are able to use a group to represent the queue. Within the following
example, assume that graphl[i][j] contains the burden of the sting (i, j).

The period is n*log(n) for removing n vertices from the queue, and m*log(n) for inserting into and
change the queue for every edge, and n*n for running the ‘for(v)'loop for every vertex u. we are able
to avoid the quadratic value by mistreatment Associate in Nursing contiguity list, for a total of
O((m+n)log(n)). In our own way to implement the priority queue is to scan the distt[] array when to
seek out the closer vertex, u.

Algorithm 2: O(n"2) Dijkstra’s

int graph[128][128],n;
int distt[128];

bool done[128];

void dijkstra(int s)

{

for(int i=0;i<n;i++)

{

distt[i] = INT_MAX;
done[i] = false;

}

Distt[s] = 0;
while(true)
{

/find the vertex with the smallest distt[]value
int u = -1,bestDist = INT_MAX;

for(int i=0;i<n;i++)if('done[i] &&distt[i] <bestDist)
{

u=i;

bestDist = distt[i];

}

if(bestDist == INT_MAX)

break;

/Irelax neighbouring edges

for(int v=0;v<n;v++)

if('done [v] && graph[u][v]! = -1)

{

If(distt[v]>distt[u] +graph[u][V])
distt[v]=distt[u] +graph[u][V];

}

Done[u] = true;

}

}

We have to introduce a brand new array, done (). We have a tendency to may additionally decision it
"black[]" as a result of its true for those vertices that have left the queue. First, we have a tendency to
initialize done to false and dist () to eternity. Within the most loop, we have a tendency to scan the
distt () array to search out the vertex, u, with negligible distt() worth that's not black however. If we

Volume-55, No.1(XI) 2021 51



Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

won't realize one, we have a tendency to break from the loop. Otherwise, we have a tendency to relax
all of U's adjacent edges. This apparently low-tech methodology is admittedly pretty clever in terms
of period. the most while() loop executes at the most n times as a result of at the tip we have a
tendency to perpetually set done[u] to true for a few u, and that we will solely do this n times before
they're all true. Within the loop, we have a tendency to do O(n) add 2 straightforward loops. The
entire is O(n2) , that is quicker than the primary deed as long because the graph is fairly dense ( m>n
a pair of /log(n) ). this can be if we have a tendency to do use associate nearness list within the initial
implementation; otherwise, the second can nearly always be faster). Dijkstra's formula is incredibly
quick, however it suffers from its inability to manage negative edge weights. Having negative edges
in a {very} graph may additionally introduce negative weight cycles that create a re-think the very
definition of "shortest path". as luck would have it, there's associate formula that's additional tolerant
to having negative edges —the attendant Ford formula.

V.DISTANCE-VECTOR ROUTING PROTOCOLS

All distance-vector routing protocols share several key characteristics:

» Periodic updates of the full routing table are sent to routing neighbors.

» Distance-vector protocols suffer from slow convergence, and are highly susceptible to loops.

» Some form of distance is used to analyze a route’s metric.

» The Bellman-Ford algorithm is used to establish the shortest path.
A distance-vector routing protocol begins by advertising directly-connected networks to its
neighbors. These updates area unit sent frequently (RIP — each thirty seconds; IGRP — each ninety
seconds). Neighbors can add the routes from these updates to their own routing tables. Every
neighbor trusts this so as fully, and can forward their full routing table (connected and learned
routes) to each alternative neighbor. Thus, routers absolutely (and blindly) suppose neighbors for
route data, an idea referred to as routing by rumor. There is a unit many disadvantages to the current
behavior. as a result of routing data is propagated from neighbor to neighbor via periodic updates,
distance-vector protocols suffer from slow convergence. This, additionally to blind religion of
neighbor updates, ends up in distance-vector protocols being extremely vulnerable to routing loops.
Table one describes the individuality of distance vector protocols. Distance-vector protocols utilize
some sort of distance to calculate a route’s metric. RIP uses hop count as its distance metric, and
IGRP uses a composite of information measure and delay.

Table 3: Distance Vector Protocol Summary

Individuality Description
Periodic updates are sent at a set interval. For IP RIP,
this interval is 30 seconds.
Updates are sent to the broadcast address
Broadcast updates 255.255.255.255. Only devices running routing
algorithms listen to these updates.
Full table updates When an update is sent, the entire routing table is sent.
Also known as Flash updates, these are sent when a
change occurs outside the update interval.
You use this method to stop routing loops. Updates are
Split horizon not sent out an outgoing interface from which the source
network was received. This saves on bandwidth as well.
This is the maximum hop count. For RIP, it is 15 and for

Periodic updates

Triggered updates

Count to infinity

IGRP, it is 255.
Algorithm One algorithm example is Bellman-Ford for RIP.
Examples RIP and IGRP are examples of distance vector protocols.

DISTRIBUTED BELLMAN FORD ALGORITHM

Volume-55, No.1(XI) 2021 52



Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

Distributed Ford additionally referred to as Distance Vector Routing rule a accepted shortest path
routing rule with time quality of O(|V||E[) wherever, V is vertices and E is edges. This rule takes care
of negative weight cycles.

The Ford rule may be a Dynamic Programming rule that solves the shortest path downside. it's at the
structure of the graph, and iteratively generates a stronger resolution from a previous one, till it
reaches the most effective resolution. Bellman-Ford will handle negative weights without delay, as a
result of it uses the complete graph to enhance an answer. the thought is to begin with a base case
resolution SO, a collection containing the shortest distances from s to any or all vertices,
mistreatment no edge in the slightest degree. within the base case, d[s] = 0, and d[v] = o for all
alternative vertices v. we have a tendency to then proceed to relax each edge once, building the set
S1. This new set is associate degree improvement over SO, as a result of it contains all the shortest
distances mistreatment one edge of d[v] is lowest in S1 if the shortest path from s to v uses one edge.
Now, we have a tendency to repeat this method iteratively, building S2 from S1, then S3 from S2,
and so on... every set S¢ contains all the shortest distances from s mistreatment k edges. Distance
d[v] is lowest in Sy if the shortest path from s to v uses at the most k edges.

Algorithm: Bellmen Ford Algorithm

Vector< pair<int, int> > Edge List; /I A list of direct edges (u,v)
int graph[128][128]; /I Gives the weight

int n,distt[128];

void bellman-ford(int s)

{

/lInitialize our solution to the BASE CASE S,
for(int i=0; i<n; i++)

distt[i] = INT_MAX;

distt[s] = 0;

for(int k=0; k<n-1; k++)

{ [/In-literations

// Builds a better solution Sy+; from Sy

for( int j=0; j< EdgeList.size(); j++)

{ Il Try for every edge

int u= EdgeList[j].first, v=EdgeList[j].second;
if( distt[u] < INT_MAX && distt[v] > dist[u] + graph[u][v] ) //relax
distt[v] = distt[u] + graph[u][Vv];

}

}

// ...Now we have the best solution after n-1 iterations

}

We tend to begin with a base case SO, and repeatedly relax each edge to come up with Sk+1 from Sk.
Note that within the relaxation step, we tend to don'trelax a foothold if distt[u] is time, or otherwise
we tend to could get overflow within the addition (conceptually we tend to ne'er wish to relax such a
foothold anyway). additionally note that the order of mistreatment the perimeters will have an effect
on the intermediate sets Sy, as a result of we tend to could 1st relax a foothold (u,v), then relax
another edge (v,w) within the same step, whereas selecting the reverse order of those 2 edges might
not relax them each. However, we tend to currently show that Sn-1 is exclusive, and contains the
shortest distance doable from s to any vertex v.

Proposition: (Accuracy of Bellman-Ford) Let Sk denotes the set of distances from s specified d[v] is
borderline in S if the shortest path from s to v uses at the most k edges. Then the Bellman-Ford rule
builds SO, S1, ..., Sn-1 iteratively. Also, Sn-1 is that the best answer and its distinctive proof. We’ve
got antecedently establish that the Bellman-Ford rule generates SO, S1, ..., Sn-1 iteratively within the

Volume-55, No.1(XI) 2021 53



Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

higher than paragraphs. Now, assumptive that negative weight cycles accessible from the supply
don't exist within the graph, Sn-1 can contain the shortest doable distances from s to the other
vertices. this can be as a result of any come in the graph can go in a cycle if we tend to use over n-1
edges, and since negative cycles don't exist, we tend to ne'er wish to use these positive weight cycles
as a part of a shortest path. And, as a result of Sn-1 contains the most effective distances, it's
exclusive. QED. So, the Bellman-Ford rule is correct, however will it continually terminate? It will,
as we tend to solely have 2 loops, one in succession n-1 iterations, and also the different browsing all
edges. Hence, the rule continually terminates, and contains a run time of O (n*m). Whereas the
Bellman-Ford rule will handle negative weight edges pronto, the correctness of the rule breaks down
once negative weight cycles exist that's accessible from s. However, the character of the rule permits
United States to discover these negative weight cycles. the thought is that, if a negative weight cycle
exist, then Sn-1 are constant as Sn, Sn+1, Sn+2, ... If we tend to run the iteration step over n-1 times,
we are going to not be ever-changing the solution. On the opposite hand, if a negative weight cycle
exist, then one amongst its edges should have negative weight, and any such edge are often relaxed
more even once n-1 iterations, decreasing a number of the distances. Hence, to discover negative
weight cycles, we tend to simply got to run the Bellman-Ford rule, and once it terminates, check
whether or not we are able to relax any edges. If we can, then that edge is accessible from a negative
weight cycle, and also the cycle is additionally accessible from the supply.

Detecting negative weight cycles in a graph

vector< pair<int,int> > EdgeList; // A list of directed edges (u,v)

int graph[128][128]; // Gives the weight

int n, distt[128];

int main()

{

// ...Set up the graph

bellman-ford(0); // Run bellman-ford on s=0

/I Check for negative weight cycles reachable from s

for( int j=0; j< EdgeList.size(); j++)

{ /I Try for every edge

int u= EdgeList[j].first, v= EdgeList[j] .second;

if( distt[u] < INT_MAX && distt[v] > distt[u] + graph[u][v] ) // can relax

cout << “Negative cycle reachable from s exists.” << endl,

return 1;

}

cout << “No negative cycle detected, shortest distance found.” << endl;

return O;

}

Bellman-Ford is slower than Dijkstra's, but with this added functionality of handling negative
weights and detecting negative cycles easily, it can be more useful in some cases. In particular, in a
directed acyclic graph (one with no cycles), we can use Bellman-Ford to find the longest path from s
to any vertices v, by simply changing all the positive weights to negative, and vice versa. Note that
finding the longest path in a general graph is N.

VI.CONCLUSION

Distance-vector protocols suffer from slow convergence, and area unit extremely vulnerable to loops.
The Bellman-Ford algorithmic rule is employed to see the shortest path. If the state of a link changes,
like a router interface failing, a poster containing solely this link-state modification are sent to all or
any routers among that space. Every router can regulate its topology table consequently, and can
calculate a brand new best route if needed. Maintain a uniform topology routing table among all
routers in a location. Link-state protocols will converge terribly quickly and area unit proof against
routing loops.

Volume-55, No.1(XI) 2021 54



Journal of the Maharaja Sayajirao University of Baroda
ISSN :0025-0422

REFERENCES
[1] Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach,” 3rd Edition,
Morgan Kaufmann, MIT, 2003.
[2] Andrew S. Tanenbaum, "Computer Networks, "Fourth Edition, New jersey, Prentice Hall, Inc.,
2003. [3] James F. Kurose & K. W. Ross, "Computer Networking: A Top-down Approach Featuring
the internet,” 2nd Ed, Peaison Education Asia, 2003.
[4] V. Gambiroza, P. Yuan, L. Balzano, Y. Liu, S. Sheafor, and E. Knightly, "Design, Analysis, and
Implementation of DVSR: A Fair HighPerformance Protocol for packet Rings,” In IEEE/ACM
Transaction on Network, Vol. 12, No. 1, 2004.
[5] William Stalling, "Data and Computer Communications, pearson Education, Inc., Publishing as
Prentice Hall, New Jersey, 2011.
[6] Z.Xu and et.al, "A more Efficient Distance Vector Routing Algorithm," In proc. IEEE MILCOM
'97 Proceeding, Vol.2, 1997.
[7] Roch Guerin and Ariel Orda, " Computing Shortest Paths for any Number of Hops," In IEEE
Transaction on Network, Vol. 10, No. 5, 2002.
[8] T.H Comrmen, C.E. Leiserson, and R.L. Rivest, "An Introduction to Algorithms," Second
Edition, MIT Press, Boston, 2002.
[9] Y. Mourtada,"Routing Basics & Protocol,” Internet draft, 2000.
[10] Jayaprakash R., Balasubramanian R. (2020) DLBPS: Dynamic Load Balancing Privacy Path
Selection Routing in Wireless Networks. In: Sengodan T., Murugappan M., Misra S. (eds)
Advances in Electrical and Computer Technologies. Lecture Notes in Electrical Engineering, vol
672. Springer, Singapore. https://doi.org/10.1007/978-981-15-5558-9 70
[11] Jayaprakash, R., & Radha, B. (2020). An Implementation of Trusted Key Management Protocol
(TKMP) in Wireless Network. Journal of Computational and Theoretical Nanoscience, 17(12), 5243-
5249.

Volume-55, No.1(XI) 2021 55


https://doi.org/10.1007/978-981-15-5558-9_70

