

EMERGING TRENDS IN COMPUTATION & ARTIFICIAL INTELLIGENCE

Editors

Dr. K. Santhosh Kumar

Dr. H. Sivalingan

Mrs. L. Sankara Maheswari

Emerging Trends in Computation & Artificial Intelligence

First Edition

Editor

Dr. K. Santhosh Kumar

Head & Assistant Professor,

PG & Research Department of Computer Science,
Providence College for Women (Autonomous),
Coonoor, The Nilgiris, Tamil Nadu, India.

Co-Editors

Dr. H. Sivalingan

Head & Assistant Professor,

Department of Data Science,

Providence College for Women (Autonomous),
Coonoor, The Nilgiris, Tamil Nadu, India.

Mrs. L. Sankara Maheswari

Head & Associate Professor,

Department of Information Technology,

Sri.G.V.G Visalakshi College for Women (Autonomous),
Udumalpet, TamilNadu, India - 642 128.

Published by

CiiT Publications

#156, 3rd Floor, Kalidas Road, Ramnagar,
Coimbatore – 641009, Tamil Nadu, India.

Phone: 0422 - 4377821

www.ciitresearch.org

All Rights Reserved.

Original English Language Edition 2025 © Copyright by CiiT Publications, a unit of **Coimbatore Institute of Information Technology.**

This book may not be duplicated in anyway without the express written consent of the publisher, except in the form of brief excerpts or quotations for the purpose of review. The information contained herein is for the personal use of the reader and may not be incorporated in any commercial programs, other books, database, or any kind of software without written consent of the publisher. Making copies of this book or any portion thereof for any purpose other than your own is a violation of copyright laws.

This edition has been published by CiiT Publications, **Coimbatore.**

Limits of Liability/Disclaimer of Warranty: The author and publisher have used their effort in preparing this “Emerging Trends in Computation & Artificial Intelligence” book and author makes no representation or warranties with respect to accuracy or completeness of the contents of this book, and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. There are no warranties which extend beyond the descriptions contained in this paragraph. No warranty may be created or extended by sales representatives or written sales materials. Neither CiiT nor author shall be liable for any loss of profit or any other commercial damage, including but limited to special, incidental, consequential, or other damages.

Trademarks: All brand names and product names used in this book are trademarks, registered trademarks, or trade names of their respective holders.

ISBN 978-93-6126-962-2

This book is printed in 70 gsm papers.

Printed in India by CiiT Publications.

MRP Rs. 700/-

CiiT Publications

#156, 3rd Floor, Kalidas Road, Ramnagar,
Coimbatore – 641009, Tamil Nadu, India.

Phone: 0422 - 4377821

www.ciitresearch.org

24	NUTRITION LABEL ANALYSIS AND PERSONALIZED DIETARY RECOMMENDATIONS USING TINYML R. Deepa and Harini S	151
25	EXPLORING THE POTENTIAL OF GENERATIVE ARTIFICIAL INTELLIGENCE TOOLS IN REDUCING SHADOW EDUCATION GROWTH Sachin Kumar, Poonam Pandita, Dr. Kiran	156
26	SAFEGUARDING HEALTH DATA: STRATEGIES FOR AI-DRIVEN PRIVACY L. Sankara Maheswari, M. Malini	166
27	GUARDIANS OF THE CYBER FRONTIER: UNDERSTANDING AND DEFENDING AGAINST MODERN CYBERSECURITY THREATS S. Sophiya, Mrs. G. Krishnaveni	173
28	IOT AND DEEP LEARNING-DRIVEN SMART HEALTH SOLUTIONS FOR TRIBAL WOMEN IN INDIA: A COMPREHENSIVE REVIEW Dr. T. Sumadhi	179
29	AI-POWERED FARMING: REDEFINING EFFICIENCY AND SUSTAINABILITY Mrs. P. Vanitha and Mrs. I. Razul Beevi	186
30	AGRICULTURAL MARKETING HUB FOR FARMERS Mayil .P	190
31	SECURE DIGITAL IMAGE TRANSMISSION USING LAMPORT BLUM-SHUB SIGNCRYPTIVE EXTREME LEARNING MACHINE Ms. V. Prabavathi	193
32	GENERATIVE AI AND LARGE LANGUAGE MODELS (LLMS) Dr. M. Rathamani	203
33	DATA SCIENCE IN HEALTH AND MEDICAL RESEARCH Dr. D. V. Chandrashekhar, K. Suneetha	210

CHAPTER – 28

IOT AND DEEP LEARNING-DRIVEN SMART HEALTH SOLUTIONS FOR TRIBAL WOMEN IN INDIA: A COMPREHENSIVE REVIEW

Dr. T. Sumadhi

Department of Computer applications,

Nallamuthu Gounder Mahalingam College, Pollachi.

ABSTRACT

Deep Learning (DL) and the Internet of Things (IoT) have come together to create new opportunities for tackling health issues in marginalized populations. In order to improve health management for Indian tribal women, this article examines smart solutions provided by DL and IoT. These technologies have the ability to solve important health challenges such as chronic diseases, maternal mortality, and malnutrition by utilizing DL for predictive analytics and IoT for real-time data collection. The main uses, current obstacles, and possible directions for successfully deploying these technologies in tribal areas are highlighted in this paper.

1. INTRODUCTION

Tribal populations make up a sizable section of India's population, and because of social, economic, and physical constraints, tribal women frequently face particular health issues. High rates of mother and infant mortality, anemia, and other health problems are caused by a lack of access to healthcare services, inadequate nutritional knowledge, and traditional behaviors. Interventions driven by technology, particularly IoT and DL, offer creative ways to deal with these issues. This paper's goal is to examine the latest developments in DL and IoT technologies, examining their potential applications and advantages for enhancing the health of Indian tribal women. The study also points out gaps in the body of knowledge and offers a plan for further study and application.

Some of the Health Challenges Faced by Tribal Women in India are:

- Maternal and Child Health In tribal areas, high rates of maternal death are a serious problem

that are made worse by a lack of access to prenatal and postnatal care. This issue is further compounded by a lack of knowledge about reproductive health.

- Nutritional Deficiencies Poor dietary habits and limited access to nutrient-dense food cause a disproportionate number of tribal women to suffer from anemia and malnutrition, which negatively impacts their general well-being and productivity.
- Chronic Diseases Diabetes and hypertension are becoming more prevalent in tribal populations, and the management of these conditions is made more difficult by the absence of early detection mechanisms.

2. ROLE OF IOT IN HEALTH MANAGEMENT

- **Instantaneous Data Gathering:** Vital health metrics like blood pressure, glucose, and hemoglobin levels may be tracked in real time thanks to Internet of Things devices like wearable sensors and smart health monitors. Healthcare professionals might receive this data for prompt action. For instance, wearable technology from brands like Garmin and Fitbit has already shown promise for ongoing health monitoring.
- **Remote Observation:** Geographical limitations can be circumvented by IoT-powered technologies that enable patient monitoring from a distance. Tribal women in isolated locations can receive diagnostic and therapeutic treatments from mobile health clinics outfitted with Internet of Things devices. One illustration is the "mHealth" platform, which has demonstrated efficacy in managing chronic illnesses remotely.
- **Systems of Early Warning:** IoT-based solutions can notify family members and medical professionals about possible health hazards, allowing

for early intervention to avoid consequences. The application of IoT-based warning systems for the early diagnosis of pregnancy-related problems has been shown in earlier studies, including Kumar et al. (2020).

- **Health Data Integration** Wearables, electronic health records, and diagnostic devices are just a few of the sources of health data that IoT devices may easily integrate. Comprehensive health profiles are made possible by this integration, which speeds up and improves the accuracy of medical judgments.

3. ROLE OF DEEP LEARNING IN HEALTH MANAGEMENT

1 Analytics for Prediction: Large datasets can be analyzed by deep learning algorithms to forecast health outcomes. Recurrent neural networks (RNNs), for instance, have been used to forecast pregnancy difficulties using longitudinal health data.

2 Customized Suggestions: Based on each person's unique health profile, DL algorithms can offer tailored healthcare suggestions, guaranteeing focused interventions. Dietary trends have been evaluated and customized nutritional programs have been suggested using convolutional neural networks (CNNs).

3 Identification of Diseases: From medical images like X-rays and blood smear scans, deep learning-based image identification can be utilized to diagnose diseases like anemia or cervical cancer. With an accuracy of above 90%, studies like Singh et al. (2021) have demonstrated the usefulness of DL in image analysis for anemia identification.

4 Health Education using Natural Language Processing (NLP): Complex medical knowledge can be translated into tribal languages using DL-powered NLP systems, giving underprivileged populations access to health education and awareness. This has been successfully tested in linguistically diverse areas.

5 Evaluation in Relation to Past Research: According to comparative research, combining DL and IoT technology greatly enhances health results.

Gupta et al. (2019), for example, showed that IoT-only solutions had an early diagnosis efficiency of 70%, but IoT plus DL raised the efficiency to 92%. Comparing IoT-enabled maternal health systems with DL algorithms for predictive analytics to conventional approaches, the former demonstrated a 30% decrease in problems.

4. APPLICATIONS OF IOT AND DL IN TRIBAL HEALTH MANAGEMENT

- **Maternal Health:** Pregnant women and their fetuses can have their health monitored with the use of IoT devices like wearable fetal monitoring and DL algorithms. Inconsistencies can trigger alerts, guaranteeing prompt medical care. In their earlier research, Choudhary et al. (2020) demonstrated how wearable technology can lower maternal death rates in rural India.

- **Nutritional Tracking:** Devices with IoT capabilities can track nutritional levels and food consumption. This data can be analyzed by DL models to find trends and offer practical advice on how to combat malnutrition. For instance, the Nutrify platform tracks nutrition in real time and makes recommendations for enhancements using DL and IoT.

- **Management of Chronic Illnesses :** DL algorithms can forecast the chance of problems, while remote monitoring devices can track the parameters of chronic diseases. Plans for treatment can be guided by these observations. One noteworthy example is a pilot research that was carried out in Kerala that integrated DL with IoT for the management of diabetes.

5. CHALLENGES AND LIMITATIONS IN INTEGRATION OF IOT AND DL

- **Facilities:** The infrastructure required to enable IoT and DL solutions, such as dependable internet connectivity and energy, is lacking in many tribal areas.

- Cost Scalability in environments with limited resources is limited by the high cost of IoT devices and DL implementation, which can be prohibitive.
- Security and Privacy of Data: Particularly in disadvantaged communities, privacy and security issues are brought up by the gathering and analysis of sensitive health data.
- Barriers Due to Culture: Implementing smart health solutions may be hampered by cultural norms

and attitudes that prevent people from embracing new technologies.

6. SMART SOLUTION USING IOT AND DL FOR HEALTH MANAGEMENT IN TRIBAL AREAS

To tackle health management issues in tribal communities, the following creative IoT and DL-based smart solutions have been developed:

S.N O	SMART SOLUTION	FUNCTIONALITY OR USAGE	BENEFITS
1	Mobile Health Clinics Powered by IoT	Install mobile health clinics with Internet of Things equipment in remote tribal communities. These clinics can offer diagnostic services (such as hemoglobin and blood pressure tests) and real-time data transfer to urban healthcare centers.	provides quick, convenient healthcare without requiring patients to travel far.
2	Wearable Maternal Health Trackers	Wearables with Internet of Things capabilities can be used by expectant mothers to monitor their blood pressure, blood sugar, and the health of the fetus. DL algorithms look for patterns in order to predict problems such as preeclampsia.	By enabling early interventions, it reduces maternal and neonatal mortality.
3	System for Remote Nutrition Monitoring	To keep an eye on the nutritional state of tribal women, distribute food intake monitors and smart scales based on the Internet of Things. DL models use data analysis to pinpoint nutritional deficits and offer tailored dietary advice.	By offering real-time dietary information, it aids in the fight against anemia and malnutrition.
4	Dashboards for Community Health	Gather anonymous health data from wearable sensors in various communities using Internet of Things devices. Proactive public health actions are made possible by DL-powered dashboards that can forecast disease outbreaks or health trends.	By using data to inform decisions, it improves health management at the community level.
5	Platforms for AI-Powered Telemedicine	Create telemedicine hubs using DL for disease prediction and IoT devices for diagnostics. Even in the case of more complex diseases, patients can consult doctors virtually.	Provides specialist medical care to underprivileged regions without the need for physical infrastructure.
6	AI-Enhanced Imaging for	Offer portable Internet of Things imaging tools for cervical screening. DL models examine pictures to find anomalies early.	Makes cancer screening for women in distant areas quick,

	Cervical Cancer Screening		inexpensive, and non-invasive.
7	Chatbots for Localized Health	Create chatbots with DL capabilities in tribal languages to instruct women on cleanliness, nutrition, and maternity health. IoT devices for symptom reporting could be included into the chatbot.	Encourages health literacy while honoring linguistic and cultural diversity.
8	Vaccine Management Systems Powered by IoT	Make use of DL models to forecast the best distribution schedules based on seasonal illness trends and tribal population density, and IoT sensors to track vaccine storage conditions.	Increases vaccination rates and lowers vaccine waste.
9	Chronic Disease Early Warning System	Install IoT-based health kits in communities that include blood pressure and glucose sensors. DL models are used to assess data and forecast the risk of hypertension or diabetes.	Enhances the management of chronic diseases and offers early detection
10	DL and IoT-Based Mental Health Monitoring	Monitor stress indicators, exercise levels, and sleep patterns with wearables that are Internet of Things enabled. The data is analyzed using DL algorithms to find early indicators of mental health problems.	Takes care of the mental health issues that are frequently disregarded in tribal areas.

These remedies have the potential to greatly enhance health outcomes in tribal regions when paired with appropriate infrastructure, community involvement, and government assistance.

7. TOOLS AVAILABLE CURRENTLY FOR SMART HEALTH SOLUTIONS

Currently available tools and initiatives that aid in smart health solutions for tribal women in India include a combination of technology-driven applications, government initiatives, and private-sector innovations. Some prominent examples are:

S.no	Application area	Tools available	Functionality
1	Mobile Health Applications	mMitra	A voice-based service providing timely health advice to pregnant women and new mothers, available in regional languages.
		Arogya Setu	Initially designed for COVID-19 tracking, it also provides general health-related information.
		eSanjeevani	A telemedicine service offering online consultations, bridging the gap between healthcare providers and remote tribal populations.

2	Wearable Devices and IoT Solutions	Smart Health Bands	Devices like Fitbit or Mi Bands that monitor vital health parameters such as heart rate, oxygen levels, and physical activity.
		IoT-Enabled Health Kiosks	Portable kiosks equipped with sensors to measure basic health indicators, designed for deployment in remote tribal areas.
3	Community Health Monitoring Platforms	SEWA Rural	A Gujarat-based initiative using mobile tools to monitor maternal and child health among tribal communities.
		Aarogya Sakhi	A mobile app empowering rural women to conduct basic diagnostic tests and maintain health records.
4	AI and Deep Learning Solutions	AI-Based Diagnostic Tools:	Tools like AI-powered ultrasound and portable diagnostic devices help in early detection of diseases such as anemia, a prevalent issue among tribal women.
		Deep Learning-Powered Imaging	Systems for detecting cervical cancer or malnutrition through advanced image processing.
5	Government Initiatives	Ayushman Bharat	Provides access to affordable healthcare and insurance for economically disadvantaged communities, including tribal women.
		National Nutrition Mission (POSHAN Abhiyaan):	Uses mobile apps and IoT-enabled tracking to monitor nutrition levels among women and children.
		ANMOL App (Auxiliary Nurse Midwife Online)	A digital platform for midwives to track maternal and child health data in rural areas.
6	Telemedicine and E-Health Platforms	Cloud Physician	Provides ICU and specialized care remotely using IoT and cloud-based solutions.
		Telemedicine Vans	Equipped with diagnostic tools and satellite connectivity to reach tribal villages.
7	Public Health Information Systems	ReMeDi Telemedicine Platform	Enables remote consultations and health screenings using IoT and AI-based devices.
		E-Health Cards	Digital health records linked with Aadhaar for better accessibility and tracking.

These tools, while impactful, require better accessibility, infrastructure, and culturally sensitive implementation to ensure they address the unique challenges tribal women face in India.

8. METHODOLOGY FOR FRAMING NEW SMART HEALTH MANAGEMENT

This methodology offers a solid and methodical way to integrate DL and IoT solutions into tribal women's health management.

Step 1: Creation of the Framework: To guarantee a systematic approach to integrating IoT and DL solutions in tribal health management, the methodology is broken down into four main phases.

Step 2: Needs Analysis: Recognize the unique health issues that native women experience. And carry out the tasks like as to find common health concerns such chronic diseases, malnutrition, and maternal health hazards, conduct surveys and community talks. Examine the infrastructure and health services that are currently in place to identify any gaps and potential opportunities for improvement. Get the target population's baseline health, lifestyle, and demographic information.

Step 3: IoT Integration: Use IoT devices to gather health data in real time. This includes a variety of components, such as environmental sensors, wearable health devices, and mobile IoT hubs.

Step 4 Data collection workflow involves the real-time collection of health data by IoT devices, the secure transmission of that data to cloud storage via satellite or mobile networks, and the preprocessing of the collected data for additional analysis.

Step 5: Deep Learning Deployment: Examine IoT data using DL algorithms to produce insights that can be put to use. The process of deploying a model involves a number of processes, including data preprocessing, model selection, training and validation, prediction, and insights.

Step 6: Pilot Implementation: This stage aids in determining whether IoT-DL solutions are feasible in a tribal context.

Step 7: Customization and Scalability: This stage aids in scaling solutions while adjusting them to suit regional requirements. Incorporating input from tribal women, healthcare professionals, and legislators; tailoring solutions to address linguistic and cultural hurdles; and analyzing data from the pilot phase to pinpoint areas for development are all beneficial.

Step 8: Evaluation and Impact Assessment: Aids in gauging how well DL and IoT activities are working. Metrics such as early chronic disease detection, dietary improvement, and health outcome diagnosis to lower maternal and infant mortality rates. Additional metrics include calculating adoption rates, forecasting cost effectiveness, and the proportion of tribal women utilizing IoT-DL solutions, among others. To increase accuracy, update DL algorithms in light of fresh data.

Step 9: Feedback Loop: Put in place a feedback system to improve procedures and deal with issues.

9. CONCLUSION & FUTURE ENHANCEMENT

Deep learning and IoT technology have enormous potential to revolutionize Indian tribal women's health management. These clever ideas can help close the healthcare gap in underprivileged communities by tackling important problems including chronic diseases, malnutrition, and maternity health. However, a multi-stakeholder strategy will be necessary to overcome obstacles like infrastructure, cost, and cultural hurdles. To optimize impact, future studies and pilot programs should concentrate on scalable, reasonably priced, and culturally aware solutions. IoT and DL solutions can be deployed in tribal communities with the support of public-private partnerships, which can help close financing and infrastructure gaps. To ensure greater acceptance and efficacy, solutions should be customized to the unique requirements and cultural settings of indigenous groups. Long-term success depends on teaching tribal women and healthcare professionals how to use this technology efficiently. The adoption of IoT and DL technologies should be encouraged by

government regulations that provide incentives for entrepreneurs, awareness campaigns, and subsidies.

REFERENCES

- [1]. Bhattacharya, S., et al. (2021). "IoT in healthcare: A comprehensive review." *Journal of Medical Systems*, 45(2).
- [2]. Singh, A., & Gupta, P. (2020). "Deep learning applications in public health: A systematic review." *Health Informatics Journal*, 26(4).
- [3]. Ministry of Tribal Affairs, Government of India. (2022). "Annual Report."
- [4]. WHO. (2021). "Global nutrition report: India insights."
- [5]. Kumar, R., et al. (2020). "IoT-based maternal health monitoring systems: A case study." *International Journal of Healthcare Management*, 13(3).
- [6]. Choudhary, N., et al. (2020). "Wearable technology in maternal health: A pilot study." *Maternal and Child Health Journal*, 24(5).
- [7]. Gupta, P., et al. (2019). "Comparative analysis of IoT and IoT-DL systems in rural healthcare." *International Journal of IoT Research*, 8(3).
- [8]. Singh, S., et al. (2021). "Deep learning-based anemia detection: A novel approach." *Biomedical Signal Processing and Control*, 68.