

SHRI NEHRU MAHA VIDYALAYA COLLEGE OF ARTS AND SCIENCE (SNMV)

(Affiliated to Bharathiar University, Coimbatore. Re-accredited with 'A+' Grade by NAAC)
Shri Gambhirmal Bafna Nagar, Malumachampatti, Coimbatore - 641 050, Tamil Nadu, India

National Seminar Proceedings on Digital Transformation in Financial Services: Today and Tomorrow 14 March, 2025

Sponsored by

INDIAN COUNCIL OF SOCIAL SCIENCE RESEARCH, NEW DELHI

Organized by

**PG and Research Department of Commerce
Shri Nehru Maha Vidyalaya College of Arts and Science
Coimbatore -641050, Tamil Nadu, India**

VOLUME:II

**Editor-in-Chief
Dr. A. Gurunathan**

SHRI NEHRU MAHA VIDYALAYA COLLEGE OF ARTS AND SCIENCE (SNMV)

(Affiliated to Bharathiar University, Coimbatore, Re-accredited with "A+" Grade by NAAC)
Shri Gambhirmal Bafna Nagar, Malumachampatti, Coimbatore - 641 050. Tamil Nadu, India.

National Seminar Proceedings on Digital Transformation in Financial Services: Today and Tomorrow

14 March, 2025

Sponsored by
INDIAN COUNCIL OF SOCIAL SCIENCE RESEARCH, NEW DELHI

Editor-in-Chief
Dr.A.Gurunathan

Organized by
PG and Research Department of Commerce
Shri Nehru Maha Vidyalaya College of Arts and Science
Coimbatore -641050, Tamil Nadu, India

Edition: First

Volume: II

Year: 2025

ISBN: 978-81-986630-0-9

All Rights Reserved: No part of this publication can be stored in any retrieval system or reproduced in any form or by any means without the prior written permission of the publisher.

© Publisher

Publisher

(International Publisher)

Kanyakumari, Chennai, Australia.

Phone: +91 6384730258

E-Mail: editor@multispectrum.org

www.multispectrum.org

	<i>Dr. G. Gabriel Prabhu & Mrs. Sanobar Mohiyudeen</i>	
21	Perception of Customers on Digital Transformation of Banking Services with Special Reference in Coimbatore <i>Sabi M, Sanjitha N, Pavithra Devi Y</i>	139-142
22	A Study on Awareness of Digital Transformation in Financial <i>Service.</i> <i>Dr.N.Shreejaa</i>	143-148
23	Internet of Things To Collect Data and Track Customer Behaviour In Real Time <i>Ms.D.Saranya</i>	149-154

**INTERNET OF THINGS TO COLLECT DATA AND TRACK CUSTOMER
BEHAVIOUR IN REAL TIME**

Ms.D.Saranya

Assistant Professor

Department of Commerce(CA), NGM College, Pollachi

Abstract

The Internet of Things (IoT) is revolutionizing the way businesses collect and analyze customer data in real time. By integrating smart devices, sensors, and cloud-based analytics, organizations can track customer behavior, preferences, and purchasing patterns with high accuracy. IoT-enabled systems provide valuable insights by gathering data from various sources, such as smart wearables, mobile apps, in-store beacons, and connected home devices. This real-time data collection allows businesses to enhance customer experiences, personalize marketing strategies, optimize inventory management, and improve overall service efficiency. Additionally, IoT-based analytics help predict future trends, enabling proactive decision-making. However, challenges such as data security, privacy concerns, and high implementation costs must be addressed to maximize IoT's potential. This study explores the role of IoT in real-time customer behavior tracking, its benefits, and the challenges associated with its adoption in various industries.

Keywords: Internet of Things, Platform Application, Data Analytics, Challenges

1. INTRODUCTION

The Internet of Things (IoT) has revolutionized the way businesses interact with their customers by enabling real-time data collection and behavioral tracking. IoT refers to a network of interconnected devices that communicate and share data without human intervention. These devices, embedded with sensors and smart technologies, collect vast amounts of data, offering valuable insights into consumer preferences, purchasing patterns, and engagement levels. In the modern digital era, companies leverage IoT-driven analytics to enhance customer experiences, optimize marketing strategies, and personalize product offerings. From smart retail shelves tracking customer interactions to wearable devices monitoring user preferences, IoT facilitates a data-driven approach to decision-making. The ability to analyze real-time customer behavior allows businesses to improve service efficiency, predict trends, and enhance customer satisfaction. The Internet of Things (IoT) technology is widely implemented across diverse domains, including logistics, medical care, and the national power grid, and has been recognized as one of the five emerging strategic industries at the national level. Key IoT technologies such as Radio Frequency Identification (RFID) ([Tan & Sidhu, 2022](#)), Global Positioning System (GPS) ([Sen, Cicioğlu & Çalhan, 2021](#)), and Geographic Information System (GIS) ([Cao & Wachowicz, 2019](#)) are widely employed in the various aspects of aquatic product cold chain logistics, offering unparalleled advantages in achieving location tracking, source tracing, and electronic operations during the processing, transportation, storage, and sales of aquatic products. The collection and sharing of data and information throughout the logistics process represents an incomparable

advantage over other information technologies, facilitating the realization of systematic and intelligent management of aquatic product cold chain logistics. From a marketing industry chain perspective, the use of digital technology for product production through IoT enables cross-field integration and expansion of digital content coverage (Xia & Liu, 2021). Based on the collected user data, precise positioning can be achieved, and various forms of promotional activities can be offered. In this process, information about the user is continuously tracked in real-time through diverse intelligent devices and fed back to the manufacturer, establishing a new cycle (Liu, 2021). In this manuscript, IoT technology is employed in the marketing system of fresh products. Through IoT identification, the product identification code is realized, enabling the retrieval of traceability information linked to the identified object. Furthermore, based on the gathered consumption information, an enhanced version of the k-means algorithm is utilized to cluster the product information and user consumption behavior, thereby augmenting the stability and accuracy of the clustering process.

As IoT adoption continues to grow across industries, its role in transforming customer engagement, retail experiences, and business operations becomes increasingly significant. This paper explores how IoT technology is used to collect data and track customer behavior in real time, highlighting its benefits, challenges, and future implications.

2. IOT PLATFORM APPLICATIONS

An **IoT platform** serves as the foundation for connecting smart devices, collecting data, and enabling real-time analytics. It acts as an intermediary that integrates hardware, software, and cloud services, ensuring seamless communication between IoT-enabled devices. Businesses across various industries leverage IoT platforms to enhance operational efficiency, improve customer experiences, and drive data-driven decision-making.

2.1 Retail and Customer Experience

IoT platforms play a crucial role in revolutionizing the retail industry by enhancing customer engagement and operational efficiency. Smart shelves equipped with RFID sensors help retailers track inventory levels in real-time, reducing stock outs and improving supply chain management. Location-based promotions, enabled by IoT, allow businesses to offer personalized discounts and advertisements based on customer preferences and shopping behavior. Automated checkout systems, powered by IoT sensors and AI, streamline the purchasing process, reducing wait times and enhancing the overall shopping experience.

2.2 Healthcare and Wearable Technology

In the healthcare sector, IoT platforms enable real-time monitoring and management of patient health through connected medical devices and wearables. Remote patient monitoring systems collect and transmit vital health data to doctors, allowing for early detection of medical conditions and timely interventions. Smart wearables, such as fitness trackers and smartwatches, track heart rate, sleep patterns, and physical activity, helping individuals maintain a healthy lifestyle. Additionally, AI-powered analytics integrated with

NATIONAL SEMINAR PROCEEDINGS ON DIGITAL TRANSFORMATION IN FINANCIAL SERVICES: TODAY AND TOMORROW

IoT devices assist in predictive diagnostics, improving patient outcomes and reducing hospital visits.

2.3 Smart Homes and Consumer Electronics

IoT platforms have transformed modern homes into smart living spaces by integrating connected devices for enhanced convenience, security, and energy efficiency. Smart home automation systems allow users to control lighting, temperature, and security systems remotely using mobile applications. Voice-controlled assistants, such as Amazon Alexa and Google Assistant, use IoT technology to facilitate seamless interactions between users and smart devices. Energy-efficient appliances, powered by IoT, optimize power consumption by learning user behavior and adjusting settings accordingly, reducing electricity costs and environmental impact.

2.4 Industrial IoT (IIoT) and Manufacturing

The adoption of IoT platforms in the industrial sector has led to significant advancements in automation, predictive maintenance, and production efficiency. Connected sensors in manufacturing plants continuously monitor machinery performance, detecting potential failures before they occur and minimizing downtime. IoT-enabled robotics and automation streamline production processes, reducing human intervention and improving precision. Real-time data analytics provide valuable insights into supply chain management, ensuring optimal resource utilization and cost savings for manufacturers.

2.5 Smart Cities and Infrastructure

IoT platforms play a vital role in the development of smart cities by improving urban infrastructure and public services. Traffic management systems use IoT sensors to monitor and control traffic flow, reducing congestion and enhancing road safety. Smart parking solutions help drivers locate available parking spaces, reducing fuel consumption and emissions. Environmental monitoring systems, powered by IoT, track air quality, water usage, and waste management, contributing to sustainable urban development. Additionally, connected surveillance networks improve public safety by providing real-time security monitoring and incident detection.

2.6 Finance and Banking

The finance and banking sector has embraced IoT platforms to enhance security, customer experience, and transaction efficiency. AI-powered fraud detection systems analyze real-time transaction data to identify and prevent suspicious activities. Smart ATMs, equipped with biometric authentication and IoT sensors, provide secure and convenient banking services. IoT-enabled banking applications offer personalized financial insights, helping customers manage their accounts efficiently. By leveraging IoT technology, banks and financial institutions improve operational efficiency, customer trust, and service accessibility.

2.7 Agriculture and Smart Farming

IoT platforms have revolutionized agriculture by enabling smart farming techniques that optimize resource utilization and increase crop yield. IoT-based irrigation systems use

sensors to monitor soil moisture levels and automatically adjust water distribution, ensuring efficient water usage. Livestock tracking devices help farmers monitor the health and location of animals, reducing losses and improving farm productivity. AI-driven crop analytics, powered by IoT, analyze environmental conditions and provide actionable insights, helping farmers make data-driven decisions to enhance agricultural output and sustainability.

3. DATA ANALYTICS IN IOT SYSTEMS

3.1 IoT and Data Analytics

The Internet of Things (IoT) refers to a network of interconnected devices embedded with sensors, software, and communication technologies that enable them to collect and exchange data. These devices generate massive amounts of real-time data, which, when analyzed using data analytics techniques, can provide valuable insights. Data analytics plays a crucial role in transforming raw IoT data into meaningful patterns, helping businesses and industries make data-driven decisions, improve efficiency, and enhance automation across various domains.

4. Role of Data Analytics in IoT

Data analytics in IoT is essential for extracting actionable insights from vast amounts of sensor-generated data. It enables real-time monitoring, predictive maintenance, and anomaly detection, which are critical in industries such as healthcare, smart cities, manufacturing, and agriculture. By leveraging advanced analytics techniques, organizations can optimize operations, reduce costs, and improve customer experiences. For example, in manufacturing, IoT analytics helps predict machinery failures before they occur, minimizing downtime and maintenance costs.

4.1 Key Steps in IoT Data Analytics

IoT data analytics involves multiple steps, starting with **data collection**, where sensors in IoT devices gather various types of data, such as temperature, humidity, and pressure. The next step is **data transmission**, where collected data is sent to cloud platforms or edge devices using communication protocols like MQTT, CoAP, or HTTP. Once the data reaches the processing unit, **data processing** takes place through cloud computing or edge computing, often utilizing AI and machine learning techniques. After processing, **data storage** is carried out in structured (SQL) or unstructured (NoSQL) databases. Finally, **data analysis** is performed using statistical models, AI, and machine learning algorithms to extract meaningful insights for better decision-making.

5. Techniques Used in IoT Data Analytics

Several analytical techniques are employed to analyze IoT data effectively. **Descriptive analytics** helps in understanding historical trends and summarizing collected data. **Predictive analytics** uses machine learning algorithms to forecast future events, such as predicting when a machine might fail. **Prescriptive analytics** goes a step further by suggesting optimal actions based on predictive models, such as adjusting energy consumption in a smart building. **Real-time analytics** processes data instantly to enable immediate

decision-making, such as detecting abnormal activities in a security system. These techniques collectively enhance IoT's ability to improve efficiency and automation across industries.

6. Applications of IoT Data Analytics

IoT data analytics has widespread applications across various industries. In healthcare, it enables remote patient monitoring and predictive disease analytics, allowing doctors to intervene before critical health issues arise. Smart cities utilize IoT analytics for traffic management, smart grids, and waste management, enhancing urban efficiency. Manufacturing industries benefit from predictive maintenance and quality control, reducing production downtime. Agriculture relies on IoT data analytics for precision farming, optimizing irrigation, and monitoring weather conditions. Retail businesses use IoT analytics to track customer behavior, manage inventory, and personalize shopping experiences, thereby improving customer satisfaction and operational efficiency.

7. Challenges in IoT Data Analytics

Despite its advantages, IoT data analytics faces several challenges. **Data security and privacy** are major concerns, as IoT devices continuously exchange sensitive information, making them vulnerable to cyber threats. **Scalability** is another challenge, as handling and processing massive amounts of IoT data require high computational resources and efficient storage solutions. **Interoperability** issues arise due to the variety of IoT devices and communication protocols, making data integration difficult. Additionally, ensuring **data quality** is crucial, as IoT-generated data may contain noise or missing values, affecting the accuracy of analytical results. Addressing these challenges requires robust security measures, efficient data management techniques, and standardized IoT frameworks.

8. CONCLUSION

The integration of IoT in tracking customer behavior and collecting real-time data has transformed the way businesses understand and engage with their customers. By leveraging IoT-enabled sensors, smart devices, and data analytics, companies can gain valuable insights into customer preferences, shopping patterns, and interactions with products and services. This real-time data allows businesses to personalize marketing strategies, enhance customer experiences, and improve operational efficiency. Additionally, IoT-driven analytics helps retailers optimize inventory management, reduce waste, and make data-driven decisions that boost profitability. However, challenges such as data privacy, security concerns, and the need for robust data management must be addressed to maximize the benefits of IoT in customer behavior tracking. As technology continues to evolve, businesses that effectively implement IoT-powered analytics will gain a competitive advantage by delivering seamless, personalized, and data-driven customer experiences.

Reference

1. Aheleroff et al. (2021). Aheleroff S, Mostashiri N, Xu X, Zhong RY. Mass personalisation as a service in industry 4.0: a resilient response case study. *Advanced Engineering Informatics*. 2021;50:101438. doi: 10.1016/j.aei.2021.101438.

**NATIONAL SEMINAR PROCEEDINGS ON DIGITAL TRANSFORMATION IN
FINANCIAL SERVICES: TODAY AND TOMORROW**

2. Bao et al. (2022). Bao J, Qu Y, Zhao S, Zheng N. The role of big data-based precision marketing in firm performance. *International Journal of Entertainment Technology and Management*. 2022;1(3):246–271.
3. Benmammar, Taleb & Krief (2017). Benmammar B, Taleb MH, Krief F. k-means clustering algorithm applied diffusing-CRN k-means: an improved in cognitive radio ad hoc networks. *Wireless Networks*. 2017;23(6):1849–1861.
4. Bhatti et al. (2020). Bhatti A, Akram H, Basit HM, Khan AU, Raza SM, Naqvi MB. E-commerce trends during COVID-19 pandemic. *International Journal of Future Generation Communication and Networking*. 2020;13(2):1449–1452.
5. Cao & Wachowicz (2019). Cao H, Wachowicz M. The design of an IoT-GIS platform for performing automated analytical tasks. *Computers, Environment and Urban Systems*. 2019;74:23–40.

**Multi
Spectrum
Publications**
Kanyakumari, Tamilnadu, India.

ISBN :: 978-81-986630-0-9

978-81-986630-0-9

www.multispectrum.org