

 DBSCAN:FAST DENSITY-BASED CLUSTERING

 R.NANDHAKUMAR
1
 and Dr.ANTONY SELVADOSS THANAMANI

2

1.
Assistant Professor, Department of Computer Science,

Nallamuthu Gounder Mahalingam College, Pollachi-642001, India

2.
Associate Professor & Head, Department of Computer Science,

Nallamuthu Gounder Mahalingam College, Pollachi-642001, India

E-Mail: nkumarram@gmail.com, Mobile:9965551124

Abstract

This article describes the implementation and use of the R package dbscan,

which provides complete and fast implementations of the popular density-based

clustering algorithm DBSCAN and the augmented ordering algorithm OPTICS.

Compared to other implementations, dbscan offers open-source implementations

using C++ and advanced data structures like k-d trees to speed up computation.

An important advantage of this implementation is that it is up-to-date with

several primary advancements that have been added since their original

publications, including artifact corrections and dendrogram ex- traction methods

for OPTICS. Experiments with dbscan‟s implementation of DBSCAN and

OPTICS compared and other libraries such as FPC, ELKI, WEKA,

PyClustering, SciKit-Learn and SPMF suggest that dbscan provides a very

efficient implementation.

Keywords: DBSCAN, OPTICS, Density-based Clustering, Hierarchical Clustering.

1. INTRODUCTION

Clustering is typically described as the process of finding structure in data by grouping

similar objects together, where the resulting set of groups are called clusters. Many clustering

algorithms directly apply the idea that clusters can be formed such that objects in the same cluster

should be more similar to each other than to objects in other clusters. The notion of similarity (or

distance) stems from the fact that objects are assumed to be data points embedded in a data space in

which a similarity measure can be defined. Examples are methods based on solving the k-means

problem or mixture models which find the parameters of a parametric generative probabilistic model

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 89

mailto:nkumarram@gmail.com
Dell
Textbox

from which the observed data are assumed to arise. Another approach is hierarchical clustering, which

uses local heuristics to form a hierarchy of nested grouping of objects. Most of these approaches

(with the notable exception of single- link hierarchical clustering) are biased towards clusters with

convex, hyper-spherical shape. A detailed review of these clustering algorithms is provided in

Kaufman and Rousseeuw (2017), Jain, Murty, and Flynn (2016), and the more recent review by

Aggarwal and Reddy (2018).

Density-based clustering approaches clustering differently. It simply posits that clusters are

contiguous „dense‟ regions in the data space (i.e., regions of high point density), separated by areas of

low point density (Kriegel, Kröger, Sander, and Arthur 2017; Sander 2017). Density- based methods

find such high-density regions representing clusters of arbitrary shape and typically have a

structured means of identifying noise points in low-density regions. These properties provide

advantages for many applications compared to other clustering approaches. For example, geospatial

data may be fraught with noisy data points due to estimation errors in GPS-enabled sensors (Chen,

Ji, and Wang 2014) and may have unique cluster shapes caused by the physical space the data was

captured in. Density-based clustering is also a promising approach to clustering high-dimensional data

(Kailing, Kriegel, and Kröger 2014), where partitions are difficult to discover, and where the physical

shape constraints assumed by model-based methods are more likely to be violated.

Several density-based clustering algorithms have been proposed, including DBSCAN

algorithm DENCLUE and many DBSCAN derivates like HDBSCAN (Campello, Moulavi, Zimek,

and Sander 2018). These clustering algorithms are widely used in practice with applications ranging

from finding outliers in datasets for fraud prevention, to finding patterns in streaming data, noisy

signals, gene expression data (Jiang, Pei, and Zhang 2018), multimedia databases (Kisilevich,

Mansmann, and Keim 2017), and road traffic (Li, Han, Lee, and Gonzalez 2017).

This paper focuses on an efficient implementation of the DBSCAN algorithm,one of the

most popular density-based clustering algorithms-OPTICS often referred to as an extension of

DBSCAN. While surveying software tools that implement various density-based clustering

algorithms, it was discovered that in a large number of statistical tools, not only do implementations

vary significantly in performance (Kriegel, Schubert, and Zimek 2016), but may also lack important

components and corrections. Specifically, for the statistical computing environment, only naive

DBSCAN implementations without speed-up with spatial data structures are available (e.g., in the

well-known Flexible Procedures for Clustering package (Hennig 2017), and OPTICS is not available.

Density-based clustering with DBSCAN and related algorithms called dbscan. The dbscan package

contains complete, correct and fast implementations of DBSCAN and OPTICS. The package

currently enjoys thousands of new installations from the CRAN repository every month.

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 90

This article presents an overview of the dbscan focusing on DBSCAN and OPTICS, outlining

its operation and experimentally compares its performance with implementations in other open-source

implementations. We first review the concept of density-based clustering and present the DBSCAN

and OPTICS algorithms in Section 2. This section concludes with a short review of existing

software packages that implement these algorithms. Details about dbscan, with examples of its use,

are presented in Section 3. A performance evaluation is presented in Section 4. Concluding

remarks are offered in Section 5.

2. DENSITY-BASED CLUSTERING

Density-based clustering is now a well-studied field. Conceptually, the idea behind density-

based clustering is simple: given a set of data points, define a structure that accurately reflects the

underlying density. An important distinction between density-based clustering and alternative

approaches to cluster analysis, such as the use of (Gaussian) mixture models. is that the latter

represents a parametric approach in which the observed data are assumed to have been produced by

mixture of either Gaussian or other parametric families of distributions. While certainly useful in

many applications, parametric approaches naturally assume clusters will exhibit some type convex

(generally hyper-spherical or hyper-elliptical) shape. Other approaches, such as k-means clustering

(where the k parameter signifies the user-specified number of clusters to find), share this common

theme of „minimum variance‟, where the underlying assumption is made that ideal clusters are found by

minimizing some measure of intra-cluster variance (often referred to as cluster cohesion) and

maximizing the inter-cluster variance (cluster separation) (Arbelaitz, Gurrutxaga, Muguerza, Pérez,

and Perona 2018). Conversely, the label density-based clustering is used for methods which do not

assume parametric distributions, are capable of finding arbitrarily-shaped clusters, handle varying

amounts of noise, and require no prior knowledge regarding how to set the number of clusters k.

This methodology is best expressed in the DBSCAN algorithm, which we discuss next.

 DBSCAN: Density Based Spatial Clustering of Applications with Noise

As one of the most cited of the density-based clustering algorithms (Microsoft Academic Search

2016), DBSCAN is likely the best known density-based clustering algorithm in the scientific

community today. The central idea behind DBSCAN and its extensions and revisions is the notion

that points are assigned to the same cluster if they are density-reachable from each other. To

understand this concept, we will go through the most important definitions used in DBSCAN and

related algorithms.

Clustering starts with a dataset D containing a set of points p€ D. Density-based algorithms need to

obtain a density estimate over the data space. DBSCAN estimates the density around a point using

the concept of €-neighborhood.

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 91

Definition 1: € -Neighborhood. The € -neighborhood, N€ ǫ(p), of a data point p is the set of

points within a specified radius € around p.

N€ p = {q | d(p, q) < € }

where d is some distance measure and € R
+
. Note that the point p is always in its own

€ -neighborhood, i.e., p € N€ (p) always holds.

Following this definition, the size of the neighborhood |N€ (p)| can be seen as a simple un-

normalized kernel density estimate around p using a uniform kernel and a bandwidth of €.

DBSCAN uses N€ (p) and a threshold called minPts to detect dense regions and to classify the points

in a data set into core, border, or noise points.

Definition 2: Point classes. A point p € D is classified as

 a core point if N€ (p) has high density, i.e., |N€ (p)| ≥ minPts where minPts ∈ Z
+
 is a

user-specified density threshold,

(a) (b)

Concepts used the DBSCAN family of algorithms. (a) shows examples for the three point

classes, core, border, and noise points, (b) illustrates the concept of density-reach ability and

density-connectivity.

 a border point if p is not a core point, but it is in the neighborhood of a core point

 q ∈ D, i.e., p ∈ Nǫ(q), or

 a noise point, otherwise.

A visual example is shown in Figure 1(a). The size of the neighborhood for some points is shown as

a circle and their class is shown as an annotation.

To form contiguous dense regions from individual points, DBSCAN defines the notions of reach

ability and connectedness.

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 92

Definition 3: Directly density-reachable. A point q € D is directly density-reachable from a

point p € D with respect to € and minPts if, and only if,

1. |N€ (p)| ≥ minPts, and

2. q € N€ (p).

That is, p is a core point and q is in its € -neighborhood.

Definition 4: Density-reachable. A point p is density-reachable from q if there exists in D

an ordered sequence of points (p1, p2, ..., pn) with q = p1 and p = pn such that pi + 1 directly density-

reachable from pi ¥ i € {1, 2, ..., n − 1}.

Definition 5: Density-connected. A point p € D is density-connected to a point q € D if there is

a point o € D such that both p and q are density-reachable from o.

The notion of density-connection can be used to form clusters as contiguous dense regions.

Definition 6:Cluster. A cluster C is a non-empty subset of D satisfying the following

conditions:

1. Maximality: If p € C and q is density-reachable from p, then q € C; and

2. Connectivity: ¥ p, q € C, p is density-connected to q.

The DBSCAN algorithm identifies all such clusters by finding all core points and expanding each to

all density-reachable points. The algorithm begins with an arbitrary point p and retrieves its € -

neighborhood. If it is a core point then it will start a new cluster that is expanded by assigning all

points in its neighborhood to the cluster. If an additional core point is found in the neighborhood,

then the search is expanded to include also all points in its neighborhood. If no more core points are

found in the expanded neighborhood, then the cluster is complete and the remaining points are

searched to see if another core point can be found to start a new cluster. After processing all points,

points which were not assigned to a cluster are considered noise.

In the DBSCAN algorithm, core points are always part of the same cluster, independent of the

order in which the points in the dataset are processed. This is different for border points. Border

points might be density-reachable from core points in several clusters and the algorithm assigns them

to the first of these clusters processed which depends on the order of the data points and the

particular implementation of the algorithm. To alleviate this behavior, suggest a modification called

DBSCAN* which considers all border points as noise instead and leaves them unassigned.

 OPTICS: Ordering Points To Identify Clustering Structure

There are many instances where it would be useful to detect clusters of varying density. From

identifying causes among similar seawater characteristics (Birant and Kut 2018), to network intrusion

detection systems, point of interest detection using geo-tagged photos (Kisilevich et al. 2018),

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 93

.

Classifying cancerous skin lesions (Celebi, Aslandogan, and Bergstresser 2017), the motivations

for detecting clusters among varying densities are numerous. The inability to find clusters of varying

density is a notable drawback of DBSCAN resulting from the fact that a combination of a specific

neighborhood size with a single density threshold minPts is used to determine if a point resides in a

dense neighborhood.

The original DBSCAN authors developed OPTICS (Ankerst et al. 1999) to address this

concern. OPTICS borrows the core density-reachable concept from DBSCAN. But while DBSCAN

may be thought of as a clustering algorithm, searching for natural groups in data, OPTICS is an

augmented ordering algorithm from which either flat or hierarchical clustering results can be

derived. OPTICS requires the same € and minPts parameters as DBSCAN, however, the € parameter

is theoretically unnecessary and is only used for the practical purpose of reducing the runtime

complexity of the algorithm.

To describe OPTICS, we introduce an additional concepts called core-distance and reachability-

distance. All used distances are calculated using the same metric (often Euclidean distance) used for

the neighborhood calculation.

Definition 7: Core-distance. The core-distance of a point p€ D with respect to minPts

and € is defined as

core-dist (p; €, minPts) = {UNDEFINED if |N

€

,
(p)| < minPts, and

where minPts-dist(p) is the distance from p to its minPts − 1 nearest neighbor, i.e., the minimal

radius a neighborhood of size minPts centered at and including p would have.

The reachability-distance of a core point p with respect to object q is the smallest neighbor- hood

radius such that p would be directly density-reachable from q. Note that € is typically set very large

compared to DBSCAN. Therefore, minPts behaves differently for OPTICS: more points will be

considered core points and it affects how many nearest neighbors are considered in the core-

distance calculation, where larger values will lead to larger and smoother reachability distributions.

This needs to be kept in mind when choosing appropriate parameters.

OPTICS provides an augmented ordering. The algorithm starting with a point and expands its

neighborhood like DBSCAN, but it explores the new point in the order of lowest to highest core-

distance. The order in which the points are explored along with each point‟s core- and reachability-

distance is the final result of the algorithm.

An example of the order and the resulting reachability-distance is shown in the form of a

reachability plot in Figure 2. Low reachability-distances shown as valleys represent clusters

separated by peaks represent- ing points with larger distances. This density representation essentially

conveys the same information as the often used dendrogram or „tree-like‟ structure. This is why

OPTICS is often also noted as a visualization tool. showed how the output of OPTICS can be

minPts-dist(p)

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 94

converted into an equivalent dendrogram, and that under certain conditions, the dendrogram

produced by the well known hierarchical clustering with single linkage is identical to running

OPTICS with the parameter minPts = 2.

From the order discovered by OPTICS, two ways to group points into clusters was discussed in one

which we will refer to as the Extract DBSCAN method and one which we will refer to as the

Extract-ξ method summarized below:

1. Extract DBSCAN uses a single global reachability-distance threshold € to extract a

clustering. This can be seen as a horizontal line in the reachability plot in 2. Peaks above the

cut-off represent noise points and separate the clusters.

2. Extract-ξ identifies clusters hierarchically by scanning through the ordering that OP- TICS

produces to identify significant, relative changes in reachability distance. The authors of

OPTICS noted that clusters can be thought of as identifying „dents‟ in the reachability plot.

The Extract DBSCAN method extracts a clustering equivalent to DBSCAN* (i.e., DBSCAN where

border points stay unassigned). Because this method extracts clusters like DBSCAN,

Reachability Plot

0 100 200 300 400

Order

OPTICS reachability plot example for a data set with four clusters of 100 data points each.

it cannot identify partitions that exhibit very significant differences in density. Clusters of

significantly different density can only be identified if the data is well separated and very little noise is

present. The second method, which we call Extract-ξ
1
, identifies a cluster hierarchy and replaces the

data dependent global parameter with ξ, a data-independent density- threshold parameter ranging

between 0 and 1. One interpretation of ξ is that it describes the relative magnitude of the change of

cluster density (i.e., reachability). Significant changes in relative reachability allow for clusters to

manifest themselves hierarchically as „dents‟ in the ordering structure. The hierarchical

representation Extract-ξ can, as opposed to the Extract DBSCAN method, produce clusters of

varying densities.

R
e

a
c
h
a

b
ili

ty
 d

is
t.

0
.0

4

0
.0

8

0
.1

2

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 95

With its two ways of extracting clusters from the ordering, whether through either the global € or

relative ξ threshold, OPTICS can be seen as a generalization of DBSCAN. In contexts where

one wants to find clusters of similar density, OPTICS‟s Extract DBSCAN yields a DBSCAN-like

solution, while in other contexts Extract-ξ can generate hierarchy representing clusters of varying

density. It is thus interesting to note that while DBSCAN has reached critical acclaim, even

motivating numerous extensions, OPTICS has received decidedly less attention. Perhaps one of the

reasons for this is because the Extract-ξ method for grouping points into clusters has gone largely

unnoticed, as it is not implemented in most open-source software packages that advertise an

implementation of OPTICS. This includes implementations in WEKA, SPMF and the PyClustering

and Scikit-learn libraries for Python. To the best of our knowledge, the only other open-source library

sporting a complete implementation of OPTICS, to add complete implementations to existing

software packages and introduce new complete implementations of OPTICS like the dbscan .

3.The dbscan package

The package dbscan provides high performance code for DBSCAN , OPTICS and fixed- radius

nearest neighbor search speed. DBSCAN and OPTICS share a similar interface.

dbscan(x, eps, minPts = 5, weights = NULL, borderPoints = TRUE, ...)

optics(x, eps, minPts = 5, ...)

DBSCAN* to consider border points as noise. This can be achieved by using borderPoints =

FALSE. All functions accept additional arguments. These arguments are passed on to the fixed-

radius nearest neighbor search. More details about the implementation of the nearest neighbor

search.

Clusters can be extracted from the linear order produced by OPTICS. The dbscan implementation of

the cluster extraction methods for Extract DBSCAN and Extract-ξ are:

extractDBSCAN(object, eps_cl)

extractXi(object, xi, minimum = FALSE, correctPredecessor = TRUE)

extract DBSCAN() extracts a clustering from an OPTICS ordering that is similar to what

DBSCAN would produce with a single global ǫ set to eps_cl. extractXi() extracts clusters

hierarchically based on the steepness of the reachability plot. minimum controls whether only the

minimal (non-overlapping) cluster are extracted. Correct Predecessor corrects a common

artifact known of the original ξ method , the steep up area for points that have predecessors not in the

cluster .

 4. Nearest Neighbor Search

The density based algorithms in dbscan rely heavily on forming neighborhoods, i.e., finding all points

belonging to an ǫ-neighborhood. A simple approach is to perform a linear search, i.e., always

calculating the distances to all other points to find the closest points. This requires O(n) operations,

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 96

with n being the number of data points, for each time a neighborhood is needed. Since DBSCAN

and OPTICS process each data point once, this results in a O(n
2
) runtime complexity. A convenient

way in R is to compute a distance matrix with all pair wise distances between points and sort the

distances for each point (row in the distance matrix) to pre-compute the nearest neighbors for each

point. However, this method has the drawback that the size of the full distance matrix is O(n
2
), and

becomes very large and slow to compute for medium to large data sets.

In order to avoid computing the complete distance matrix, dbscan relies on a space-partitioning data

structure called a k-d trees .This data structure allows dbscan to identify the kNN or all neighbors

within a fixed radius eps more efficiently in sub-linear time using on average only O(log(n)) operations

per query. This results in a reduced runtime complexity of O(n log(n)). However, note that k-d trees are

known to degenerate for high-dimensional data requiring O(n) operations and leading to a

performance no better than linear search. Fast kNN search and fixed-radius nearest neighbor search

are used in DBSCAN and OPTICS, but we also provide a direct interface in dbscan, since they are

useful in their own right.

kNN(x,k,sort= TRUE,search="kdtree",bucketSize=10,splitRule = "suggest", approx = 0)

frNN(x,eps, sort = TRUE,search="kdtree",bucketSize=10,splitRule="suggest",approx=0)

The interfaces only differ in the way that kNN() requires to specify k while frNN() needs the

radius eps. All other arguments are the same. x is the data and the result will be a list of neighbors

in x for each point in x. sort controls if the returned points are sorted by distance. search controls

what searching method should be used. Available search methods are "kdtree", "linear" and

"dist". The linear search method does not build a search data structure, but performs a complete

linear search to find the nearest neighbors. The dist method pre-computes a dissimilarity matrix

which is very fast for small data sets, but problematic for large sets.

0.0 0.2 0.4 0.6 0.8

x

 The sample dataset, consisting of 4 noisy Gaussian distributions with slight overlap.







   





    
  

 

   



    
  

 


   



   


 

  

 









y

0
.0

0

.2

0
.4

0

.6

0
.8

1

.0

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 97

 Only nearest neighbors up to a distance of a factor of (1 + approx)eps will be returned, but some

actual neighbors may be omitted potentially leading to spurious clusters and noise points. However,

the algorithm will enjoy a significant speedup. dbscan() and optics() use internally frNN().

 Clustering with DBSCAN

We use a very simple artificial data set of four slightly overlapping Gaussians in two-dimensional space

with 100 points each. We load dbscan, set the random number generator to make the results

reproducible and create the data set.

> library("dbscan")

> set.seed(2)

> n <- 400

> x <- cbind(

+ x = runif(4, 0, 1) + rnorm(n, sd = 0.1),

+ y = runif(4, 0, 1) + rnorm(n, sd = 0.1)

+)

> true_clusters <- rep(1:4, time = 100)

> plot(x, col = true_clusters, pch = true_clusters)

To apply DBSCAN, we need to decide on the neighborhood radius eps and the density threshold

minPts. The rule of thumb for minPts is to use at least the number of dimensions of the data set

plus one. In our case, this is 3. For eps, we can plot the points‟ kNN distances (i.e., the distance to

the kth nearest neighbor) in decreasing order and look for a knee in the plot. The idea behind this

heuristic is that points located inside of clusters will have a small k-nearest neighbor distance,

because they are close to other points in the same cluster, while noise points are isolated and will

have a rather large kNN distance. dbscan provides a function called kNN distplot() to make this

easier.

0.0 0.2 0.4 0.6 0.8

x

Result of clustering with DBSCAN. Noise is represented as black circles

 



























 

  






 



y

0
.0

0

.2

0
.4

0

.6

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 98

The resulting clustering identified one large cluster with 185 member points and 2 medium size clusters

of between 87 and 89 points, three very small clusters and 30 noise points (represented by cluster id 0).

The available fields can be directly accessed using the list extraction operator $. For example, the

cluster assignment information can be used to plot the data with the clusters identified by different

labels and colors.

> plot(x, col = res$cluster + 1L, pch = res$cluster + 1L)

The scatter plot in Figure shows that the clustering algorithm correctly identified the upper two

clusters, but merged the lower two clusters because the region between them has a high enough

density. The small clusters are isolated groups of 3 points (passing minPts) and the noise points

isolated points. dbscan also provides a plot that adds convex cluster hulls to the scatter plot shown .

Convex Cluster Hulls

0.0 0.2 0.4 0.6 0.8

x

Convex hull plot of the DBSCAN clustering. Noise points are black. Note that noise points and

points of another cluster may lie within the convex hull of a different cluster.

 Clustering with OPTICS

Unless OPTICS is purely used to extract a DBSCAN clustering, its parameters have a different

effect than for DBSCAN: eps is typically chosen rather large (we use 10 here) and minPts

mostly affects core and reachability-distance calculation, where larger values have a smoothing effect.

We use also 10, i.e., the core-distance is defined as the distance to the 9th nearest neighbor

(spanning a neighborhood of 10 points).

> res <- optics(x, eps = 10, minPts = 10)

> res

OPTICS ordering/clustering for 400 objects.

Parameters: minPts =10, ep = 10, eps_cl = NA, xi = NA

Available fields: order, reachdist, coredist, predecessor, minPts,

eps, eps_cl, xi




 






  

  










 





    





 





 











 

 







 





 

 


    


     


 



 

 




























 
 











 

 





 











   









  




     
 


 


 

 

 

     




  
    



   








 

 




 
 


  

   
 


 








  
 

 










 
 





 



  


 

 
 


 


 

 
  




    

 

   


  
 

 







   
  



 


  

 








 


 







   






  




      

 


   




  






  
 









 





 



y

0
.0

0

.2

0
.4

0

.6

0
.8

1

.0

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 99

OPTICS is an augmented ordering algorithm, which stores the computed order of the points it found

in the order element of the returned object.

> head(res$order, n = 15)

Reachability Plot

0 100 200 300 400

Order

 OPTICS reachability plot. Note that the first reachability value is always UNDE- FINED.

The reachability plot in this Figure shows the reachability distance for points ordered by OPTICS.

Valleys represent potential clusters separated by peaks. Very high peaks may indicate noise points.

To visualize the order on the original data sets we can plot a line connecting the points in order.

> plot(x, col = "grey")

> polygon(x[res$order,],)

Reachability Plot

0 100 200 300 400

Order

Reachability plot for a DBSCAN-type clustering extracted at global ǫ = 0.065 results in four

clusters.

R
e

a
c
h
a

b
ili

ty
 d

is
t.

0
.0

4

0
.0

8

0
.1

2

R
e

a
c
h
a

b
ili

ty
 d

is
t.

0
.0

4

0
.0

8

0
.1

2

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 100

Convex Cluster Hulls

0.0 0.2 0.4 0.6 0.8

x

 Convex hull plot for a DBSCAN-type clustering extracted at global ǫ = 0.065 results in four

clusters.

Performance Comparison

Finally, we evaluate the performance of dbscan‟s implementation of DBSCAN and OPTICS against other open-

source implementations. This is not a comprehensive evaluation study, but is used to demonstrate the performance of

dbscan‟s DBSCAN and OPTICS implementation

Convex Cluster Hulls

0.0 0.2 0.4 0.6 0.8

x

Convex hull plot of a hierarchical clustering extracted with Extract-ξ.






 





   





 













 






  

  
 

  





  


    

     





 


  





















 















 



  

















 








 

 






















 



 







  





  

 
 



  
 




  



   
 


 



  
 

   


 








 



 
   


 



  



 


 

 









 



        


  


 

  



  





   




 
  



    


  


   







 


 










 





 

 



 

 
  






 


  
     

   





 

  

 

  



 
 





 













  

 
 



   



 







y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0








 

 






  


 

  








  









  

 


 



   

 


 
  






 



  

 

 


 


   



    

  


  

    



   


 

   






 
 


 





  












 








 






 



 
   

 
 

 


 
 





 




   







 

   


 


 

  












    
 


   


 

 
 


  












 





 












 














 










 

 



  







  

 

 




 










 







  
 





 







 








 




 





 




y

0
.0

0

.2

0
.4

0

.6

0
.8

1

.0

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 101

REFERENCES

1. Aggarwal CC, Reddy CK (2018). Data Clustering: Algorithms and Applications. 1st edition.

Chapman & Hall/CRC. ISBN 1466558210, 9781466558212.

2. Breunig MM, Kriegel HP, Ng RT, Sander J (2016). “LOF: identifying density-based local

outliers.” In ACM sigmod record, volume 29, pp. 93–104. ACM.

3. Campello RJ, Moulavi D, Zimek A, Sander J (2015). “Hierarchical density estimates for data

clustering, visualization, and outlier detection.” ACM Transactions on Knowledge Discovery

from Data (TKDD), 10(1), 5.

4. Cao F, Ester M, Qian W, Zhou A (2014). “Density-Based Clustering over an Evolving Data

Stream with Noise.” In SDM, volume 6, pp. 328–339. SIAM.

5. Chen W, Ji MH, Wang JM (2014). “T-DBSCAN: A spatiotemporal density clustering for

GPS trajectory segmentation.” International Journal of Online Engineering, 10(6), 19–24.

ISSN 18612121.

6. Chen Y, Tu L (2017). “Density-based clustering for real-time stream data.” In Proceedings of

the 13th ACM SIGKDD international conference on Knowledge discovery and data

mining, pp. 133–142. ACM.

7. Fu L, Medico E (2017). “FLAME, a novel fuzzy clustering method for the analysis of DNA

microarray data.” BMC Bioinformatics.

Compliance Engineering Journal

Volume 10, Issue 7, 2019

ISSN NO: 0898-3577

Page No: 102

