Compliance Engineering Journal ISSN NO: 0898-3577

DBSCAN:FAST DENSITY-BASED CLUSTERING

R.NANDHAKUMAR® and Dr.ANTONY SELVADOSS THANAMANI 2
L pssistant Professor, Department of Computer Science,
Nallamuthu Gounder Mahalingam College, Pollachi-642001, India

2-pssociate Professor & Head, Department of Computer Science,
Nallamuthu Gounder Mahalingam College, Pollachi-642001, India

Abstract

This article describes the implementation and use of the R package dbscan,
which provides complete and fast implementations of the popular density-based
clustering algorithm DBSCAN and the augmented ordering algorithm OPTICS.
Compared to other implementations, dbscan offers open-source implementations
using C++ and advanced data structures like k-d trees to speed up computation.
An important advantage of this implementation is that it is up-to-date with
several primary advancements that have been added since their original
publications, including artifact corrections and dendrogram ex- traction methods
for OPTICS. Experiments with dbscan’s implementation of DBSCAN and
OPTICS compared and other libraries such as FPC, ELKI, WEKA,
PyClustering, SciKit-Learn and SPMF suggest that dbscan provides a very

efficient implementation.

Keywords: DBSCAN, OPTICS, Density-based Clustering, Hierarchical Clustering.

1. INTRODUCTION

Clustering is typically described as the process of finding structure in data by grouping
similar objects together, where the resulting set of groups are called clusters. Many clustering
algorithms directly apply the idea that clusters can be formed such that objects in the same cluster
should be more similar to each other than to objects in other clusters. The notion of similarity (or
distance) stems from the fact that objects are assumed to be data points embedded in a data space in
which a similarity measure can be defined. Examples are methods based on solving the k-means

problem or mixture models which find the parameters of a parametric generative probabilistic model

Volume 10, Issue 7, 2019 Page No: 89


mailto:nkumarram@gmail.com
Dell
Textbox


Compliance Engineering Journal ISSN NO: 0898-3577

from which the observed data are assumed to arise. Another approach is hierarchical clustering, which
uses local heuristics to form a hierarchy of nested grouping of objects. Most of these approaches
(with the notable exception of single- link hierarchical clustering) are biased towards clusters with
convex, hyper-spherical shape. A detailed review of these clustering algorithms is provided in
Kaufman and Rousseeuw (2017), Jain, Murty, and Flynn (2016), and the more recent review by
Aggarwal and Reddy (2018).

Density-based clustering approaches clustering differently. It simply posits that clusters are
contiguous ‘dense’ regions in the data space (i.e., regions of high point density), separated by areas of
low point density (Kriegel, Kroger, Sander, and Arthur 2017; Sander 2017). Density- based methods
find such high-density regions representing clusters of arbitrary shape and typically have a
structured means of identifying noise points in low-density regions. These properties provide
advantages for many applications compared to other clustering approaches. For example, geospatial
data may be fraught with noisy data points due to estimation errors in GPS-enabled sensors (Chen,
Ji, and Wang 2014) and may have unique cluster shapes caused by the physical space the data was
captured in. Density-based clustering is also a promising approach to clustering high-dimensional data
(Kailing, Kriegel, and Kroger 2014), where partitions are difficult to discover, and where the physical

shape constraints assumed by model-based methods are more likely to be violated.

Several density-based clustering algorithms have been proposed, including DBSCAN
algorithm DENCLUE and many DBSCAN derivates like HDBSCAN (Campello, Moulavi, Zimek,
and Sander 2018). These clustering algorithms are widely used in practice with applications ranging
from finding outliers in datasets for fraud prevention, to finding patterns in streaming data, noisy
signals, gene expression data (Jiang, Pei, and Zhang 2018), multimedia databases (Kisilevich,
Mansmann, and Keim 2017), and road traffic (Li, Han, Lee, and Gonzalez 2017).

This paper focuses on an efficient implementation of the DBSCAN algorithm,one of the
most popular density-based clustering algorithms-OPTICS often referred to as an extension of
DBSCAN. While surveying software tools that implement various density-based clustering
algorithms, it was discovered that in a large number of statistical tools, not only do implementations
vary significantly in performance (Kriegel, Schubert, and Zimek 2016), but may also lack important
components and corrections. Specifically, for the statistical computing environment, only naive
DBSCAN implementations without speed-up with spatial data structures are available (e.g., in the
well-known Flexible Procedures for Clustering package (Hennig 2017), and OPTICS is not available.
Density-based clustering with DBSCAN and related algorithms called dbscan. The dbscan package
contains complete, correct and fast implementations of DBSCAN and OPTICS. The package

currently enjoys thousands of new installations from the CRAN repository every month.

Volume 10, Issue 7, 2019 Page No: 90



Compliance Engineering Journal ISSN NO: 0898-3577

This article presents an overview of the dbscan focusing on DBSCAN and OPTICS, outlining

itsoperationand experimentally compares its performance withimplementations in other open-source

implementations. We first review the concept of density-based clustering and present the DBSCAN
and OPTICS algorithms in Section 2. This section concludes with a short review of existing
software packages that implement these algorithms. Details about dbscan, with examples of its use,
are presented in Section 3. A performance evaluation is presented in Section 4. Concluding
remarks are offered in Section 5.

2. DENSITY-BASED CLUSTERING

Density-based clustering is now a well-studied field. Conceptually, the idea behind density-
based clustering is simple: given a set of data points, define a structure that accurately reflects the
underlying density. An important distinction between density-based clustering and alternative
approaches to cluster analysis, such as the use of (Gaussian) mixture models. is that the latter
represents a parametric approach in which the observed data are assumed to have been produced by
mixture of either Gaussian or other parametric families of distributions. While certainly useful in
many applications, parametric approaches naturally assume clusters will exhibit some type convex
(generally hyper-spherical or hyper-elliptical) shape. Other approaches, such as k-means clustering
(where the k parameter signifies the user-specified number of clusters to find), share this common
theme of ‘minimum variance’, where the underlying assumption is made that ideal clusters are found by
minimizing some measure of intra-cluster variance (often referred to as cluster cohesion) and
maximizing the inter-cluster variance (cluster separation) (Arbelaitz, Gurrutxaga, Muguerza, Pérez,
and Perona 2018). Conversely, the label density-based clustering is used for methods which do not
assume parametric distributions, are capable of finding arbitrarily-shaped clusters, handle varying
amounts of noise, and require no prior knowledge regarding how to set the number of clusters k.

This methodology is best expressed in the DBSCAN algorithm, which we discuss next.

DBSCAN: Density Based Spatial Clustering of Applications with Noise

As one of the most cited of the density-based clustering algorithms (Microsoft Academic Search
2016), DBSCAN is likely the best known density-based clustering algorithm in the scientific
community today. The central idea behind DBSCAN and its extensions and revisions is the notion
that points are assigned to the same cluster if they are density-reachable from each other. To
understand this concept, we will go through the most important definitions used in DBSCAN and

related algorithms.

Clustering starts with a dataset D containing a set of points p€D. Density-based algorithms need to
obtain a density estimate over the data space. DBSCAN estimates the density around a point using

the concept of €neighborhood.

Volume 10, Issue 7, 2019 Page No: 91



Compliance Engineering Journal ISSN NO: 0898-3577

Definition 1: €-Neighborhood. The €-neighborhood, Ng(p), of a data point p is the set of
points within a specified radius €around p.
Nep = {q [ d(p, q) < €}

where d is some distance measure and € R*. Note that the point p is always in its own

€-neighborhood, i.e., p €Ndp) always holds.

Following this definition, the size of the neighborhood |N¢ (p)| can be seen as a simple un-
normalized kernel density estimate around p using a uniform kernel and a bandwidth of €
DBSCAN uses N¢p) and a threshold called minPts to detect dense regions and to classify the points
in a data set into core, border, or noise points.

Definition 2: Point classes. A point p €D is classified as

e acore point if N¢p) has high density, i.e., [IN{p)| > minPts where minPts € Z" is a

user-specified density threshold,

Border
p and ¢ are
density-reachable
from o

Therefore
p and g are
density-connected

Eps=1 Eps=1

minPts =4 minPts = 4

Border

(@) (b)
Concepts used the DBSCAN family of algorithms. (a) shows examples for the three point

classes, core, border, and noise points, (b) illustrates the concept of density-reach ability and

density-connectivity.

e aborder point if p is not a core point, but it is in the neighborhood of a core point
q € D, i.e., p € Ny(q), or
e a noise point, otherwise.
A visual example is shown in Figure 1(a). The size of the neighborhood for some points is shown as
a circle and their class is shown as an annotation.
To form contiguous dense regions from individual points, DBSCAN defines the notions of reach

ability and connectedness.

Volume 10, Issue 7, 2019 Page No: 92



Compliance Engineering Journal ISSN NO: 0898-3577

Definition 3: Directly density-reachable. A point q €D is directly density-reachable from a
point p €D with respect to €and minPts if, and only if,

1. |Ndp)| = minPts, and

2. €Ndp).
That is, p is a core point and q is in its €-neighborhood.
Definition 4: Density-reachable. A point pis density-reachable from q if there exists in D
an ordered sequence of points (ps,pz, ..., Pn) With g = p;and p = p, such that p; +1 directly density-
reachable from p; ¥i€{1,2,..,n—1}.
Definition 5: Density-connected. A point p € D is density-connected to a point g €D if there is
a point 0 €D such that both p and q are density-reachable from o.
The notion of density-connection can be used to form clusters as contiguous dense regions.
Definition 6:Cluster. A cluster C is a non-empty subset of D satisfying the following
conditions:

1. Maximality: If p€C and q is density-reachable from p, then q€C; and

2. Connectivity: ¥ p, q €C, p is density-connected to g.
The DBSCAN algorithm identifies all such clusters by finding all core points and expanding each to
all density-reachable points. The algorithm begins with an arbitrary point p and retrieves its €-
neighborhood. If it is a core point then it will start a new cluster that is expanded by assigning all
points in its neighborhood to the cluster. If an additional core point is found in the neighborhood,
then the search is expanded to include also all points in its neighborhood. If no more core points are
found in the expanded neighborhood, then the cluster is complete and the remaining points are
searched to see if another core point can be found to start a new cluster. After processing all points,

points which were not assigned to a cluster are considered noise.

In the DBSCAN algorithm, core points are always part of the same cluster, independent of the
order in which the points in the dataset are processed. This is different for border points. Border
points might be density-reachable from core points in several clusters and the algorithm assigns them
to the first of these clusters processed which depends on the order of the data points and the
particular implementation of the algorithm. To alleviate this behavior, suggest a modification called
DBSCAN* which considers all border points as noise instead and leaves them unassigned.

OPTICS: Ordering Points To Identify Clustering Structure

There are many instances where it would be useful to detect clusters of varying density. From
identifying causes among similar seawater characteristics (Birant and Kut 2018), to network intrusion

detection systems, point of interest detection using geo-tagged photos (Kisilevich et al. 2018),

Volume 10, Issue 7, 2019 Page No: 93



Compliance Engineering Journal ISSN NO: 0898-3577

Classifying cancerous skin lesions (Celebi, Aslandogan, and Bergstresser 2017), the motivations
for detecting clusters among varying densities are numerous. The inability to find clusters of varying
density is a notable drawback of DBSCAN resulting from the fact that a combination of a specific
neighborhood size with a single density threshold minPts is used to determine if a point resides in a
denseneighborhood.

The original DBSCAN authors developed OPTICS (Ankerst et al. 1999) to address this
concern. OPTICS borrows the core density-reachable concept from DBSCAN. But while DBSCAN
may be thought of as a clustering algorithm, searching for natural groups in data, OPTICS is an
augmented ordering algorithm from which either flat or hierarchical clustering results can be
derived. OPTICS requires the same €and minPts parameters as DBSCAN, however, the €parameter
is theoretically unnecessary and is only used for the practical purpose of reducing the runtime
complexity of the algorithm.

To desibe OPTICS, we introduce an additional concepts called core-distance and reachability-
distance. All used distances are calculated using the same metric (often Euclidean distance) used for
the neighborhood calculation.

Definition 7: Core-distance. The core-distance of a point p€D with respect to minPts

and € is defined as

UNDEFINED if IN £(p)| < minPts,and

dict (n-€mi -
core-dist (p;~minPts) minPts-dist(p)

where minPts-dist(p) is the distance from p to its minPts — 1 nearest neighbor, i.e., the minimal
radius a neighborhood of size minPts centered at and including p would have.

The reachability-distance of a core point p with respect to object g is the smallest neighbor- hood
radius such that p would be directly density-reachable from g. Note that € is typically set very large
compared to DBSCAN. Therefore, minPts behaves differently for OPTICS: more points will be
considered core points and it affects how many nearest neighbors are considered in the core-
distance calculation, where larger values will lead to larger and smoother reachability distributions.

This needs to be kept in mind when choosing appropriate parameters.

OPTICS provides an augmented ordering. The algorithm starting with a point and expands its
neighborhood like DBSCAN, but it explores the new point in the order of lowest to highest core-
distance. The order in which the points are explored along with each point’s core- and reachability-

distance is the final result of the algorithm.

An example of the order and the resulting reachability-distance is shown in the form of a
reachability plot in Figure 2. Low reachability-distances shown as valleys represent clusters
separated by peaks represent- ing points with larger distances. This density representation essentially
conveys the same information as the often used dendrogram or ‘tree-like’ structure. This is why

OPTICS is often also noted as a visualization tool. showed how the output of OPTICS can be

Volume 10, Issue 7, 2019 Page No: 94



Compliance Engineering Journal ISSN NO: 0898-3577

converted into an equivalent dendrogram, and that under certain conditions, the dendrogram
produced by the well known hierarchical clustering with single linkage is identical to running
OPTICS with the parameter minPts = 2.

From the order discovered by OPTICS, two ways to group points into clusters was discussed in one

which we will refer to as the Extract DBSCAN method and one which we will refer to as the

Extract-¢ method summarized below:

1. Extract DBSCAN uses a single global reachability-distance threshold €to extract a
clustering. This can be seen as a horizontal line in the reachability plot in 2. Peaks above the

cut-off represent noise points and separate the clusters.

2. Extract-¢ identifies clusters hierarchically by scanning through the ordering that OP- TICS
produces to identify significant, relative changes inreachability distance. The authors of
OPTICS noted that clusters can be thought of as identifying ‘dents’ in the reachability plot.

The Extract DBSCAN method extracts a clustering equivalent to DBSCAN~* (i.e., DBSCAN where

border points stay unassigned). Because this method extracts clusters like DBSCAN,

Reachability Plot

o~
—
- O
0
©
2
£ 3
5 o
I
)
ad
: L‘.
Q
0 100 200 300 400

Order

OPTICS reachability plot example for a data set with four clusters of 100 data points each.

it cannot identify partitions that exhibit very significant differences in density. Clusters of
significantly different density can only be identified if the data is well separated and very little noise is
present. The second method, which we call Extract-&', identifies a cluster hierarchy and replaces the
data dependent global parameter with &, a data-independent density- threshold parameter ranging
between 0 and 1. One interpretation of & is that it describes the relative magnitude of the change of
cluster density (i.e., reachability). Significant changes in relative reachability allow for clusters to
manifest themselves hierarchically as ‘dents’ in the ordering structure. The hierarchical
representation Extract-& can, as opposed to the Extract DBSCAN method, produce clusters of

varying densities.

Volume 10, Issue 7, 2019 Page No: 95



Compliance Engineering Journal ISSN NO: 0898-3577

With its two ways of extracting clusters from the ordering, whether through either the global €or
relative ¢ threshold, OPTICS can be seen as a generalization of DBSCAN. In contexts where
one wants to find clusters of similar density, OPTICS’s Extract DBSCAN yields a DBSCAN-like
solution, while in other contexts Extract-& can generate hierarchy representing clusters of varying
density. It is thus interesting to note that while DBSCAN has reached critical acclaim, even
motivating numerous extensions, OPTICS has received decidedly less attention. Perhaps one of the
reasons for this is because the Extract-§ method for grouping points into clusters has gone largely
unnoticed, as it is not implemented in most open-source software packages that advertise an
implementation of OPTICS. This includes implementations in WEKA, SPMF and the PyClustering
and Scikit-learn libraries for Python. To the best of our knowledge, the only other open-source library
sporting a complete implementation of OPTICS, to add complete implementations to existing

software packages and introduce new complete implementations of OPTICS like the dbscan .

3.The dbscan package

The package dbscan provides high performance code for DBSCAN , OPTICS and fixed- radius
nearest neighbor search speed. DBSCAN and OPTICS share a similar interface.

dbscan(x, eps, minPts = 5, weights = NULL, borderPoints = TRUE, ...)
optucs(x, eps, minPts =5, ...)

DBSCAN* to consider border points as noise. This can be achieved by using borderPoints =
FALSE. All functions accept additional arguments. These arguments are passed on to the fixed-
radius nearest neighbor search. More details about the implementation of the nearest neighbor

search.

Clusters can be extracted from the linear order produced by OPTICS. The dbscan implementation of
the cluster extraction methods for Extract DBSCAN and Extract-§ are:

extractDBSCAN(object, eps_cl)
extractXi(object, xi, minimum = FALSE, correctPredecessor = TRUE)
extract DBSCAN() extracts a clustering from an OPTICS ordering that is similar to what

DBSCAN would produce with a single global ¢ set to eps_cl. extractXi() extracts clusters
hierarchically based on the steepness of the reachability plot. minimum controls whether only the
minimal (non-overlapping) cluster are extracted. Correct Predecessor corrects a common
artifact known of the original £ method , the steep up area for points that have predecessors not in the
cluster.

4. Nearest Neighbor Search

The density based algorithms in dbscan rely heavily on forming neighborhoaods, i.e., finding all points
belonging to an Q-neighborhood. A simple approach is to perform a linear search, i.e., always

calculating the distances to all other points to find the closest points. This requires O(n) operations,

Volume 10, Issue 7, 2019 Page No: 96



Compliance Engineering Journal ISSN NO: 0898-3577

with n being the number of data points, for each time a neighborhood is needed. Since DBSCAN
and OPTICS process each data point once, this results in a O(n) runtime complexity. A convenient
way in Ris to compute a distance matrix with all pair wise distances between points and sort the
distances for each point (row in the distance matrix) to pre-compute the nearest neighbors for each
point. However, this method has the drawback that the size of the full distance matrix is O(n?), and
becomes very large and slow to compute for medium to large data sets.

In order to avoid computing the complete distance matrix, dbscan relies on a space-partitioning data
structure called a k-d trees .This data structure allows dbscan to identify the KNN or all neighbors
within a fixed radius epsmore efficiently in sub-linear time using on average only O(log(n)) operations
per query. This results in a reduced runtime complexity of O(nlog(n)). However, note that k-d trees are
known to degenerate for high-dimensional data requiring O(n) operations and leading to a
performance no better than linear search. Fast KNN search and fixed-radius nearest neighbor search
are used in DBSCAN and OPTICS, but we also provide a direct interface in dbscan, since they are
useful in their own right.

KNN(X,k,sort=TRUE,search=""kdtree",bucketSuaze=10,spl 1 tRulle = **suggest™*, approx = 0)

TrNN(X,eps, sort = TRUE,search=""kdtree' ,bucketSize=10,spl i tRulle=""suggest'*,approx=0)

The interfaces only differ in the way that kNN() requires to specify k while FrNN() needs the
radius eps. All other arguments are the same. X is the data and the result will be a list of neighbors
in x for each point in x. sort controls if the returned points are sorted by distance. search controls
what searching method should be used. Available search methods are "kdtree", "linear" and
"dist". The linear search method does not build a search data structure, but performs a complete
linear search to find the nearest neighbors. The dist method pre-computes a dissimilarity matrix

which is very fast for small data sets, but problematic for large sets.

0.6
|

0.4
|

0.2

0.0

The sample dataset, consisting of 4 noisy Gaussian distributions with slight overlap.

Volume 10, Issue 7, 2019 Page No: 97



Compliance Engineering Journal ISSN NO: 0898-3577

Only nearest neighbors up to a distance of a factor of (1 + approx)eps will be returned, but some
actual neighbors may be omitted potentially leading to spurious clusters and noise points. However,
the algorithm will enjoy a significant speedup. dbscan() and optics() use internally friN().

Clustering with DBSCAN

Weuseaverysimpleartificial dataset of four slightly overlapping Gaussians intwo-dimensional space
with 100 points each. We load dbscan, set the random number generator to make the results
reproducible and create the data set.

> Llibrary(*"dbscan™)
> set.seed(2)

>n<-400

> X <- chind(

+ X = runif¥(4, 0, 1) + rnorm(n, sd = 0.1),
+ y = runif(4, 0, 1) + rnorm(n, sd = 0.1)
+ )

> true_clusters <- rep(1:4, time = 100)

> plot(x, col = true _clusters, pch = true_clusters)

Toapply DBSCAN, we need to decide on the neighborhood radius eps and the density threshold
minPts. The rule of thumb for minPts is to use at least the number of dimensions of the data set
plus one. In our case, this is 3. For eps, we can plot the points” KNN distances (i.e., the distance to
the kth nearest neighbor) in decreasing order and look for a knee in the plot. The idea behind this
heuristic is that points located inside of clusters will have a small k-nearest neighbor distance,
because they are close to other points in the same cluster, while noise points are isolated and will
have a rather large KNN distance. dbscan provides a function called kNN distplot() to make this

gasier.

0.6

0.4

0.0

0.0 0.2 0.4 0.6 0.8

Result of clustering with DBSCAN. Noise is represented as black circles

Volume 10, Issue 7, 2019 Page No: 98



Compliance Engineering Journal ISSN NO: 0898-3577

Theresulting clustering identified one large cluster with 185 member points and 2 medium size clusters
of between 87 and 89 points, three very small clusters and 30 noise points (represented by cluster id 0).
The available fields can be directly accessed using the list extraction operator $. For example, the
cluster assignment information can be used to plot the data with the clusters identified by different
labels and colors.

> plot(x, col = res$cluster + 1L, pch = res$cluster + 1L)

The scatter plot in Figure shows that the clustering algorithm correctly identified the upper two
clusters, but merged the lower two clusters because the region between them has a high enough
density. The small clusters are isolated groups of 3 points (passing minPts) and the noise points

isolated points. dbscan also provides a plot that adds convex cluster hulls to the scatter plot shown .

Convex Cluster Hulls

04 06 08 10

0.2

0.0

0.0 0.2 0.4 0.6 0.8

Convex hull plot of the DBSCAN clustering. Noise points are black. Note that noise points and

points of another cluster may lie within the convex hull of a different cluster.

Clustering with OPTICS

Unless OPTICS is purely used to extract a DBSCAN clustering, its parameters have a different
effect than for DBSCAN: eps is typically chosen rather large (we use 10 here) and minPts
mostly affects core and reachability-distance calculation, where larger values have a smoothing effect.
We use also 10, i.e., the core-distance is defined as the distance to the 9th nearest neighbor
(spanning a neighborhood of 10 points).

> res <- optics(x, eps = 10, minPts = 10)
> res
OPTICS ordering/clustering for 400 objects.

Parameters: minPts =10, ep= 10, eps_cl = NA, xi = NA
Available fields: order, reachdist, coredist, predecessor, minPts,

eps, eps_cl, xi

Volume 10, Issue 7, 2019 Page No: 99



Compliance Engineering Journal ISSN NO: 0898-3577

OPTICS is an augmented ordering algorithm, which stores the computed order of the points it found
in the order element of the returned object.
> head(res$order, n = 15)

Reachability Plot

0 100 200 300

Order

OPTICS reachability plot. Note that the first reachability value is always UNDE- FINED.

0.12

Reachability dist.
0.08

0.04

400

The reachability plot in this Figure shows the reachability distance for points ordered by OPTICS.
Valleys represent potential clusters separated by peaks. Very high peaks may indicate noise points.
Tovisualize the order on the original data sets we can plot a line connecting the points in order.

> plot(x, col = "grey")
> polygon(x[res$order,], )

Reachability Plot

o~
—
= O
0
S
P
£ 3
S o
S 0 ke il
i
]
<
: il
© mmm"HH
0 100 200 300 400
Order

Reachability plot for a DBSCAN-type clustering extracted at global @ = 0.065 results in four

clusters.

Volume 10, Issue 7, 2019 Page No: 100



Compliance Engineering Journal ISSN NO: 0898-3577

Convex Cluster Hulls

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8

X

Convex hull plot for a DBSCAN-type clustering extracted at global @ = 0.065 results in four

clusters.
Performance Comparison

Finally, we evaluate the performance of dbscan’s implementation of DBSCAN and OPTICS against other open
source implementations. This is not a comprehensive evaluation study, but is used to demonstrate the performance o
dbscan’s DBSCAN and OPTICS implementation

Convex Cluster Hulls

04 06 08 10

0.2

0.0

0.0 0.2 0.4 0.6 0.8

X

Convex hull plot of a hierarchical clustering extracted with Extract-&.

Volume 10, Issue 7, 2019 Page No: 101



Compliance Engineering Journal ISSN NO: 0898-3577

REFERENCES
1. Aggarwal CC, Reddy CK (2018). Data Clustering: Algorithms and Applications. 1st edition.
Chapman & Hall/CRC. ISBN 1466558210, 9781466558212.

2. Breunig MM, Kriegel HP, Ng RT, Sander J (2016). “LOF: identifying density-based local
outliers.” In ACM sigmod record, volume 29, pp. 93-104. ACM.

3. Campello RJ, Moulavi D, Zimek A, Sander J (2015). “Hierarchical density estimates for data
clustering, visualization, and outlier detection.” ACM Transactions on Knowledge Discovery
from Data (TKDD), 10(1), 5.

4. Cao F, Ester M, Qian W, Zhou A (2014). “Density-Based Clustering over an Evolving Data
Stream with Noise.” In SDM, volume 6, pp. 328-339. SIAM.

5. Chen W, Ji MH, Wang JM (2014). “T-DBSCAN: A spatiotemporal density clustering for
GPS trajectory segmentation.” International Journal of Online Engineering, 10(6), 19-24.
ISSN 18612121.

6. ChenY,TuL (2017). “Density-based clustering for real-time stream data.” In Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 133-142. ACM.

7. Ful, Medico E (2017). “FLAME, a novel fuzzy clustering method for the analysis of DNA

microarray data.” BMC Bioinformatics.

Volume 10, Issue 7, 2019 Page No: 102





