

Effect of herbal spray for coconut copra process, storage and Post-harvest disease management

R Rakkimuthu^{1*}, R Indu², P Sathishkumar³, AM Anandakumar⁴, D Sowmiya⁵

¹⁻⁵ Assistant professor, Dr. Mahalingam Centre for Research and Development, PG and Research Department of Botany, Nallamuthu Gounder Mahalingam College, Pollachi, Coimbatore, Tamil Nadu, India

² PG student, Dr. Mahalingam Centre for Research and Development, PG and Research Department of Botany, Nallamuthu Gounder Mahalingam College, Pollachi, Coimbatore, Tamil Nadu, India

Abstract

India is the leading country in copra production and export. The process of copra making a fungal infection is the major problem and reduces the yield. Most of the copra suppliers using sulphur for fungal eradication. In the present study using herbal spray instead of sulphur for fungal eradication. Three types of fungus were isolated from infected copra. This fungus were identified as *Aspergillus niger*, *Aspergillus flavus* and *Rhizopus stolonifer* under microscope using Anneline blue staining. The leaf extracts of *Peltophorum pterocarpum*, *Melia azedarach*, *Ocimum sanctum* leaves, *Terminalia chebula* seeds and juice of *Allium sativum* and *Citrus limon* juice were formulated with different ratio for poly herbal spray production. The formulated herbal spray (F1 to F6) was tested for antifungal activity against the isolated fungus like *Aspergillus niger*, *Aspergillus flavus* and *Rhizopus stolonifer*. The formulation four and six were showed the maximum antifungal activity against the three fungal species. Hence these formulations were used for fungal eradication in copra production industries in future.

Keywords: coconut copra, medicinal plants, poly herbal spray, antifungal activity, agar well diffusion

1. Introduction

In India one third of population depends on the agricultural sector directly or indirectly. Agriculture remains as the main stay of the Indian economy since times immemorial. Coconut palms are grown in most of the zones expect subtropical and temperate regions, which include all states and three union territories in India. In Tamil Nadu, coconut farming is major cultivation practice in Coimbatore, Thanjavur and Dindigul districts. Among others Pollachi taluk in Coimbatore district is well known for coconut cultivation as the land cover in this zone is fully occupied by coconut groves.

Copra is the source of coconut oil. During the process of copra production, the coconut nuts are affected by microbial diseases and reduce the yield of the coconut oil product. Fungal contamination of stored copra is a very serious problem in tropical warm regions of the world. Many fungi have been found to be associated with copra. Only a few of them cause severe damage to the copra production. *Aspergillus niger*, *Aspergillus flavus*, *Penicillium italicum* and *Rhizopus stolonifer* and are the few important fungi which infect the copra. The fungal species *Aspergillus* and *Penicillium* are among the major reported genera having the ability to produce mycotoxins during copra storage^[1, 2].

The copra needs to be preserved in good quality for storage purposes and it is important to identify and check fungal growth which are associated with the deterioration of coconut copra and investigate the possible control measures. Diseases of coconut palms are well documented^[3] but little or no information available on the fungi of copra coconut and their deteriorative ability. Fungal infections are known to reduce the productivity of crops and its associated products. Like most nut meats, coconut meat contains less sugar and protein of high nutritive value. It

is comparatively high in minerals like iron, phosphorus and zinc. Coconut oil (copra oil) extracted from the nutmeat of matured fruits white, glycerine rich and semi-solid stable in air and is used for cooking.

Nowadays most of the copra production industries in Pollachi area are using sulphur against the fungal infection in the coconut copra process and production. The sulphur treated copra are crushed to get oil and used for food preparation. Due to sulphur containing oil, people are suffering from ulcerative colitis. Sulphur rich foods may also cause inflammation of mucosa, increase blood pressure, skin disease, psoriasis and eczema. Currently, Integrated Disease Management (IDM) concept is increasingly adopted in many plant disease management programs with a view to protect the environment and to maintain the healthy food chain. The recent research also focuses on searching for safer and more compatible alternative methods for plant disease management. Plant derived bio-fungicides are now emerging as most important eco-friendly component of IDM^[4]. The presence of inherent antimicrobial compounds in many higher plants has long been recognized as vital issue for illness resistance. Such compounds, being degradable and selective in their toxicity are considered as valuable ingredients for controlling plant diseases caused by fungi^[5]. In the present study locally available medicinal plant extract at definite ratio were tested to evolve an antifungal herbal spray which can replace the sulphur for the process and production of copra.

2. Materials and Methods

2.1 Collection and preparation of herbal plant extract

The selected herbal plants were collected from Western Ghats of Tamilnadu, South India. The plants parts were washed with distilled water to remove the dust particles and

dried under shade for few days. After complete shade dried plant materials were powdered using pulverizer. The crude extracts were prepared using soxhlet extraction method with methanol solvent.

2.2 Formulation of herbal spray

Herbal spray was prepared by the definite ratio of selected plant extracts mixed with any one essential oil.

2.3 Isolation of fungi from infected copra

The infected copra was collected from coconut copra industry and it was inoculated to the PDA medium surface and incubated for 5-7 days. After 7 days the fungal colonies were grown at the PDA medium surface. Individual fungal colonies were sub cultured onto PDA medium to get pure culture [6].

2.4 Morphological identification of fungi:

The morphological characters of three pure culture fungi were identified by microscopic method. The Fungus was cultured on the PDA Media and incubated for 24 – 48 hours. Then the cultures were identified by using the stain Anneline blue. Pureculture of three strains were identified under microscope by the morphological characters [7].

2.5 Antifungal Activity

The formulated herbal spray was tested for their antifungal activity by well diffusion method⁸ against the isolated fungal pathogens. About 20-25 ml of potato dextrose agar medium was added to pre-sterilized plates. After this, 0.1 ml (1x10⁸ CFU/ml) of 12-16 hrs old culture of isolated three fungi was separately spread over the surface of agar plates. Petri plates were allowed to dry. Six wells in each plate of 6mm diameter were punched in agar surface with the help of sterilized cork borer. Each well filled with 100 μ l of

different formulated herbal spray extract. In another plate 3 wells were made with 6mm diameter. These three wells filled with different concentration of amoxicillin. The plates were kept in laminar air flow for 30 minutes for proper diffusion of the formulated extract and there after incubated at 37°C for 24 - 48 hours. After 48 hours of incubation the zone of inhibition was clearly visible and the diameter of the zone was measured.

3. Results

Poly herbal spray of various formulations were prepared using leaf extracts of *Peltophorum pterocarpum*, *Melia azedarach*, *Ocimum sanctum*, *Terminalia chebula* (seed), juice of *Allium sativum* and *Citrus limon*. Each formulation with definite ratios was given in (table 1).

Table 1: Formulations and composition of antifungal poly herbal spray

Plant Name	F1	F2	F3	F4	F5	F6
<i>Peltophorum pterocarpum</i>	20mg	10mg	50mg	30mg	40mg	60mg
<i>Melia azedarach</i>	40mg	60mg	10mg	20mg	30mg	50mg
<i>Terminalia chebula</i>	30mg	20mg	60mg	50mg	10mg	40mg
<i>Ocimum sanctum</i>	50mg	40mg	30mg	60mg	20mg	10mg
<i>Allium sativum</i>	600 μ l	300 μ l	400 μ l	100 μ l	500 μ l	200 μ l
<i>Citrus lemon</i>	100 μ l	500 μ l	200 μ l	400 μ l	600 μ l	300 μ l
<i>Clove oil</i>	500 μ l					

3.1 Isolation of fungi from infected copra

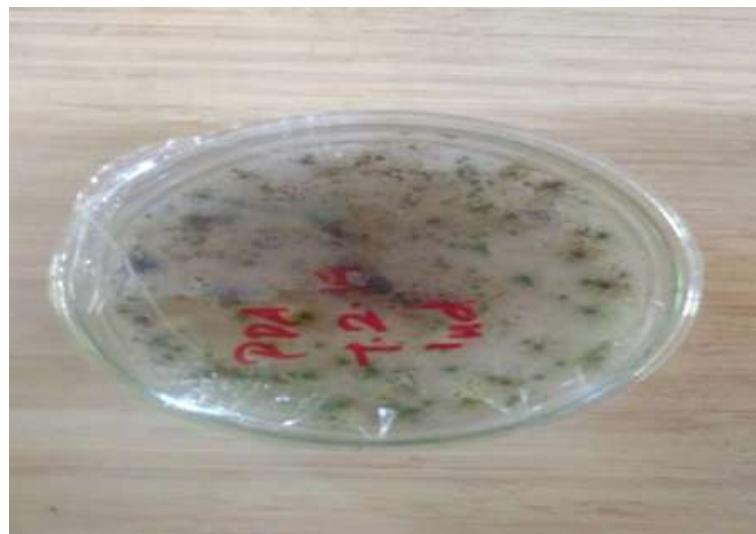
Infected copra was cultured in PDA medium and incubated for 3-5 days. After incubation period three types of fungal species were grown on agar plate (Figure-2). Based on the morphology each species was sub culture separately to the PDA medium and get three pure cultures of fungal species and named as Fungi 1, Fungi 2 and Fungi 3 (Figure-3)

Allium sativum

Terminalia chebula

Peltophorum pterocarpum

Ocimum sanctum

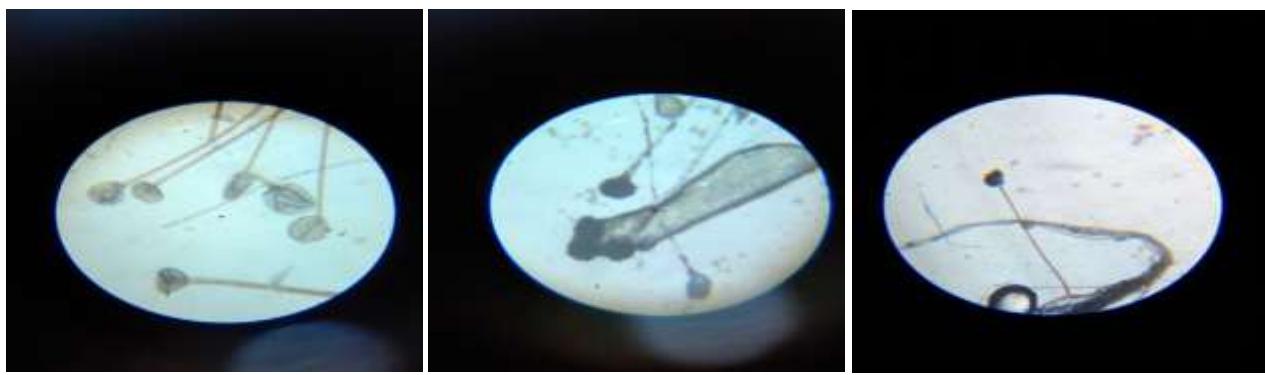


Citrus limon

Melia azedarach

Fig 1: Selected plants for poly herbal spray preparation

Fig 2: Three types of fungal species on PDA plate


3.2 Morphological identification of fungi

For identification of the fungi 1, fungi 2 and fungi 3 from the pure culture the mycelium was taken separately and mounted on a glass slide and stained with cotton blue and viewed under microscope. The character of fungi1 showed the conidia heads was globose and rectangular and it

appears as light brown in colour. So it is confirmed as *Aspergillus niger*. In fungi 2, Conidiophore was colourless and the heads are globular. So it is confirmed as *Aspergillus flavus*. In fungi 3, the sporangiophores bear sporangia and it appears black in colour. So, the fungus was confirmed as *Rhizopus stolonifer* (Figure -4).

Fig 3: Pure cultures of fungal species on PDA plate

Aspergillus niger

Aspergillus flavus

Rhizopus stolonifer

Fig 4: Morphological identification of isolated fungi

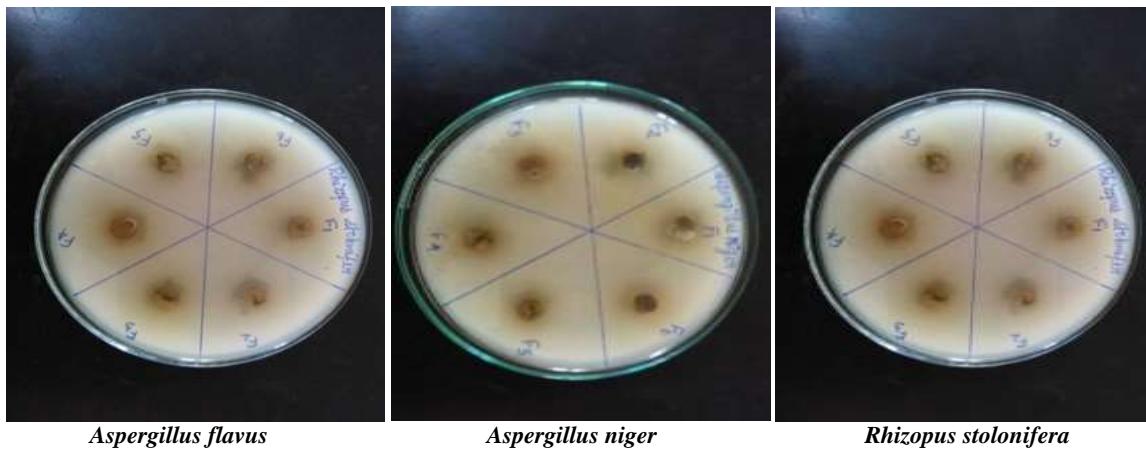


Fig 5: Antifungal fungal activity of Poly herbal spray

3.3 Antifungal activity

Evaluation of antifungal activity of formulated poly herbal spray was executed by agar well diffusion methods against copra infecting fungi. The result of antifungal activity of six different formulations was studied against three fungi namely *Aspergillus niger*, *Aspergillus flavus* and *Rhizopus stolonifer*. Six different formulations tried the formulation four and six showed the better antifungal activity against all the tested three organisms (table-2). The maximum zone of inhibition was observed in *Aspergillus flavus* (18mm) followed by *Aspergillus niger* (13mm) and *Rhizopus stolonifer* (10 mm) (Figure-5). **F1 formulation showed the antifungal activity against all the tested three organisms.** The maximum zone of inhibition was observed in *Aspergillus flavus* (18mm) followed by *Aspergillus niger* (13mm) and *Rhizopus stolonifer* (10mm). F2 formulation showed the maximum zone of inhibition was observed in *Aspergillus niger* (14mm) and *Aspergillus flavus* (14mm) followed by *Rhizopus stolonifer* (12mm). F3 formulation showed the maximum zone of inhibition in *Aspergillus flavus* (21mm) followed by *Aspergillus niger* (15mm) and *Rhizopus stolonifer* (11mm). F5 formulation showed the maximum zone of inhibition in *Aspergillus flavus* (19mm) followed by *Aspergillus niger* (13mm) and *Rhizopus stolonifer* (13mm).

Table 2: Antifungal activity of formulated herbal spray

Organisms	Zone of inhibition(mm)							
	F1	F2	F3	F4	F5	F6	Amoxycillin	DMSO
<i>Aspergillus flavus</i>	18	14	21	23	19	24	18	0
<i>Aspergillus niger</i>	13	14	15	17	13	16	19	0
<i>Rhizopus stolonifer</i>	10	12	11	14	13	14	15	0

4. Discussion

The microscopic characters of *Aspergillus flavus* are observed that conidial heads are typically radiate, conidiophore uncoloured, coarsely roughened less than 1mm long by 8-12 μ wide with 1-2 μ thick wall [9]. In the current study similar morphological character was observed. *Aspergillus niger* are observed that conidial heads biseriate, radiate, conidia in chains or detached and dispersed. Conidia heads were biseriate and globose in shape with wide spherical to globose vesicle that measured 37-52 μ m [10]. In the present study morphological character was similar to Beatrice *et al.* The microscopic characters of *Rhizopus stolonifer* are observed that hyphae broad, not or scarcely separate [11]. Our study also showed the significant result.

Thus, it is clear from the above study that the plant extracts with different formulation have proved the good antifungal activity against the pathogenic fungi. In the similar studies, several reports stated that the extracts of medicinal plants play an important role in controlling many phytopathogenic fungi [12, 13]. The author reported that antifungal activity of the leaf extracts of some medicinal plants against numerous pathogens including *Alternaria sp.* and *Rhizopus sp* [14]. It is accepted that among of the foremost necessary fungi inflicting post-harvesting diseases of plant are *Aspergillus spp.*, *Alternaria spp* and *Rhizopus stolonifer*. Mondall *et al.* reported that an inhibitory effect of neem leaf extracts on seed borne fungi *Aspergillus* and *Rhizopus* [15]. Raji and Raveendran, reported the antifungal activity of selected plant extracts against phytopathogenic fungi *Aspergillus niger* [12]. The present study indicated that the inhibitory effect of the formulated spray on these pathogenic fungi might be attributed to the presence of some partially effective antifungal ingredients in the formulation of all the test formulation. The alcoholic root, shoot and seed extract of *Eucalyptus australis* showed the antifungal activity against *Aspergillus niger* [16] (13mm, 12mm and 12mm). In the present study all the prepared formulations showed the significant antifungal activity against the isolated pathogens.

5. Conclusion

All the copra production industries in India were used sulphur for fungal eradication at the process of copra making. In our result state that formulated herbal extract showed higher antifungal activity against the pathogens isolated from infected copra. So the formulation 4 and 6 will be used for fungal eradication in copra production industries in future.

6. References

1. Gautam AK, Bhaduria R. Occurrence of toxigenic moulds and mycotoxins in Ayurvedic medicine Trifolia churn, J Mycol Plant Pathol. 2008; 3:664-666.
2. Gautam AK, Bhaduria R. Detection of Toxigenic fungi and mycotoxins in medicinally important powdered herbal drugs. The Internet Journal of Microbiology. 2009; 7(2):1-8.
3. Onuegbu BA. Fundamental of crop production. Agro-service and extension unit. River state university of science and technology. Port Harcourt, 2002, 176-177.
4. Kumbhar PP, Kshama M, Chawan Ujwala B, Patil,

Vidya P, Nikubh Bendre RS, Dewang PM. *et al.* Antifungal and repellent potency of some spice extracts. Pestology. 2001; 25:44-46.

5. Bindu TK, Shafi PM, Rajan PP, Sharma VR. Antifungal activity of *Uvaria narum* extracts. Allelopathy J. 1998; 5:67-74.
6. Lensing M, Prescott. Handbook of microtechnique 6th edition. McGraw- Hill Book Company, 2005, 488-489.
7. Raper KB, Fennell DI. The genus *Aspergillus*. Williams and Wilkins Company, 1965, 1-686.
8. Azoro C. Antibacterial activity of Crude extract of *Azadirachta indica* on *Salmonella typhi*. World. J Biotechnol. 2002; 3(1):347-351.
9. Hina Afzal, Saleem Shazad, Syeda Qamar Un Nisa. Morphological identification of *Aspergillus* species from the soil of larkana district (sindh, Pakistan). Asian J Agricultural Biology. 2013; 1(3):105-117.
10. Beatrice Wabusya Nyongesa, Sheila Okoth, Vincent Ayugi. Identification Key for *Aspergillus* Species Isolated from Maize and Soil of Nandi County, Kenya. Adv Microbiol. 2015; 5:205-229.
11. Ana Niurka Hernández-Lauzardo, Silvia Bautista-Baños, Miguel Gerardo Velázquezdel Valle, José Luis Trejo-Espino. Identification of *Rhizopus stolonifer* (Ehrenb: Fr.) Vuill., Causal Agent of Rhizopus Rot Disease of Fruits and Vegetables. Rev. Mex. Fitopatol. 2005; 24:64-69.
12. Raji R, Raveendran K. Antifungal activity of selected plant extracts against phytopathogenic fungi *Aspergillus niger*. Asian J Plant Sci Res. 2013; 3(1):13-15.
13. Hossain MM, Chowdhury N, Khan AL. Effect of fungicides on the production of healthy onion seeds. Abstract 5th Biennial Conf, *Bangladesh Phytopathol. Soc*, 1993, 7.
14. Anwar MN, Sing P, Begum J, Chowdhury JU. Antifungal activity of some selected plant extracts on phytopathogenic fungi. Bang J Life Sci. 1994; 6:23-26.
15. Mondall NK, Mojumdar A, Chatterje SK, Banerjee A, Datta JK, Gupta S. *et al.* Antifungal activities and chemical characterization of Neem leaf extracts on the growth of some selected fungal species *in vitro* culture medium. J Appl Sci Environ Manage. 2009; 13:4-53.
16. Mohit kumar, Mohammed Faheem, Satyapal Singh, Anwar Shahzad, Ashok K Bhargava. Antifungal activity of the *Eucalyptus australe* important medicinal plant. IJESI. 2013; 2(1):27-30.