

Thangaprakash Sengodan
M. Murugappan
Sanjay Misra *Editors*

Advances in Electrical and Computer Technologies

Select Proceedings of ICAECT 2019

Lecture Notes in Electrical Engineering

Volume 672

Series Editors

Leopoldo Angrisani, Department of Electrical and Information Technologies Engineering, University of Napoli Federico II, Naples, Italy

Marco Arteaga, Departament de Control y Robótica, Universidad Nacional Autónoma de México, Coyoacán, Mexico

Bijaya Ketan Panigrahi, Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, India

Samarjit Chakraborty, Fakultät für Elektrotechnik und Informationstechnik, TU München, Munich, Germany

Jiming Chen, Zhejiang University, Hangzhou, Zhejiang, China

Shanben Chen, Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Tan Kay Chen, Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore

Rüdiger Dillmann, Humanoids and Intelligent Systems Laboratory, Karlsruhe Institute for Technology, Karlsruhe, Germany

Haibin Duan, Beijing University of Aeronautics and Astronautics, Beijing, China

Gianluigi Ferrari, Università di Parma, Parma, Italy

Manuel Ferre, Centre for Automation and Robotics CAR (UPM-CSIC), Universidad Politécnica de Madrid, Madrid, Spain

Sandra Hirche, Department of Electrical Engineering and Information Science, Technische Universität München, Munich, Germany

Faryar Jabbari, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA

Limin Jia, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Alaa Khamis, German University in Egypt El Tagamoa El Khames, New Cairo City, Egypt

Torsten Kroeger, Stanford University, Stanford, CA, USA

Qilian Liang, Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, USA

Ferran Martín, Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Tan Cher Ming, College of Engineering, Nanyang Technological University, Singapore, Singapore

Wolfgang Minker, Institute of Information Technology, University of Ulm, Ulm, Germany

Pradeep Misra, Department of Electrical Engineering, Wright State University, Dayton, OH, USA

Sebastian Möller, Quality and Usability Laboratory, TU Berlin, Berlin, Germany

Subhas Mukhopadhyay, School of Engineering & Advanced Technology, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand

Cun-Zheng Ning, Electrical Engineering, Arizona State University, Tempe, AZ, USA

Toyoaki Nishida, Graduate School of Informatics, Kyoto University, Kyoto, Japan

Federica Pascucci, Dipartimento di Ingegneria, Università degli Studi "Roma Tre", Rome, Italy

Yong Qin, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China

Gan Woon Seng, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, Singapore

Joachim Speidel, Institute of Telecommunications, Universität Stuttgart, Stuttgart, Germany

Germano Veiga, Campus da FEUP, INESC Porto, Porto, Portugal

Haitao Wu, Academy of Opto-electronics, Chinese Academy of Sciences, Beijing, China

Junjie James Zhang, Charlotte, NC, USA

The book series *Lecture Notes in Electrical Engineering* (LNEE) publishes the latest developments in Electrical Engineering—quickly, informally and in high quality. While original research reported in proceedings and monographs has traditionally formed the core of LNEE, we also encourage authors to submit books devoted to supporting student education and professional training in the various fields and applications areas of electrical engineering. The series cover classical and emerging topics concerning:

- Communication Engineering, Information Theory and Networks
- Electronics Engineering and Microelectronics
- Signal, Image and Speech Processing
- Wireless and Mobile Communication
- Circuits and Systems
- Energy Systems, Power Electronics and Electrical Machines
- Electro-optical Engineering
- Instrumentation Engineering
- Avionics Engineering
- Control Systems
- Internet-of-Things and Cybersecurity
- Biomedical Devices, MEMS and NEMS

For general information about this book series, comments or suggestions, please contact leontina.dicecco@springer.com.

To submit a proposal or request further information, please contact the Publishing Editor in your country:

China

Jasmine Dou, Associate Editor (jasmine.dou@springer.com)

India, Japan, Rest of Asia

Swati Meherishi, Executive Editor (Swati.Meherishi@springer.com)

Southeast Asia, Australia, New Zealand

Ramesh Nath Premnath, Editor (ramesh.premnath@springernature.com)

USA, Canada:

Michael Luby, Senior Editor (michael.luby@springer.com)

All other Countries:

Leontina Di Cecco, Senior Editor (leontina.dicecco@springer.com)

**** Indexing: The books of this series are submitted to ISI Proceedings, EI-Compendex, SCOPUS, MetaPress, Web of Science and Springerlink ****

More information about this series at <http://www.springer.com/series/7818>

Thangaprakash Sengodan · M. Murugappan ·
Sanjay Misra
Editors

Advances in Electrical and Computer Technologies

Select Proceedings of ICAECT 2019

Springer

Editors

Thangaprakash Sengodan
SVS College of Engineering
Coimbatore, Tamil Nadu, India

M. Murugappan
Kuwait College of Science
and Technology
Doha, Kuwait

Sanjay Misra
Covenant University
Ota, Nigeria

ISSN 1876-1100 ISSN 1876-1119 (electronic)
Lecture Notes in Electrical Engineering
ISBN 978-981-15-5557-2 ISBN 978-981-15-5558-9 (eBook)
<https://doi.org/10.1007/978-981-15-5558-9>

© Springer Nature Singapore Pte Ltd. 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

The ICAECT series aims to offer a great opportunity to bring together professors, researchers and scholars around the globe a great platform to deliver the latest innovative research results and the most recent developments and trends in electrical, electronics and computer engineering and technology fields. The ICAECT 2019 featured invited talks from eminent personalities all around the world, pre-conference tutorial/workshops and referred paper presentations. The vision of the ICAECT series is to promote foster communication among researchers and practitioners working in a wide variety of the above areas in engineering and technology. It also provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends and concerns as well as practical challenges encountered and solutions adopted in the fields of electrical and computer technologies. The ICAECT 2019 received around 600 submissions from across the world, and 119 research papers have been published in the book entitled *Advances in Electrical and Computer Technologies* after the stringent screening and review process by the editorial team. The ICAECT is an annual technical event and has been aimed to be conducted in the fourth week of April every year. Being the first edition, ICAECT received submission from different regions of the world, and scholars from 15 countries have registered to present their research works.

Coimbatore, India

Dr. Thangaprakash Sengodan
Conference Chair
ICAECT 2019

Contents

Detecting New Events from Microblogs Using Convolutional Neural Networks	1
A. Bhuvaneswari, K. Aishwarya, S. Bhuvaneshwari, C. Sai Chandni, and P. Sundara Akilesh	
Deep Neural Network for Evaluating Web Content Credibility Using Keras Sequential Model	11
R. Manjula and M. S. Vijaya	
SENTRAC: A Novel Real Time Sentiment Analysis Approach Through Twitter Cloud Environment	21
Md. Julkar Nayeen Mahi, Kazi Moinul Hossain, Milon Biswas, and Md Whaiduzzaman	
Low Power Area Efficient Improved DWT and AES Architectures for Secure Image Coding	33
Renjith V. Ravi, Kamalraj Subramaniam, and G. K. D. Prasanna Venkatesan	
Launch Overheads of Spark Applications on Standalone and Hadoop YARN Clusters	47
P. S. Janardhanan and Philip Samuel	
Neighbor-Aware Coverage-Based Probabilistic Data Aggregation for Reducing Transmission Overhead in Wireless Sensor Networks	55
M. Umadevi and M. Devapriya	
Analysis and Summarization of Related Blog Entries Using Semantic Web	67
Aarti Sharma and Niyati Baliyan	

A Supplement to “PRE: A Simple, Pragmatic, and Provably Correct Algorithm”	77
Rahibb and S. Sarala	
Satellite Image Classification with Data Augmentation and Convolutional Neural Network	83
Parth R. Dave and Hariom A. Pandya	
A Real-Time Offline Positioning System for Disruption Tolerant Network	93
Arnika Patel and Pariza Kamboj	
A Novel Copy-Move Image Forgery Detection Method Using 8-Connected Region Growing Technique	101
Shyamalendu Kandar, Ardhendu Sarkar, and Bibhas Chandra Dhara	
A Method for the Prediction of the Shrinkage in Roasted and Ground Coffee Using Multivariable Statistics	115
Alexander Parody, Dhizzy Charris, Amelec Viloria, Jorge Cervera, and Hugo Hernandez-P	
Recommendation of Energy Efficiency Indexes for the Coffee Sector in Honduras Using Multivariate Statistics	123
Rafael Gomez Dorta, Omar Bonerge Pineda Lezama, Nelson Alberto Lizardo Zelaya, Noel Varela Izquierdo, and Jesus Silva	
Modeling and Simulating Human Occupation: A NetLogo-Agent-Based Toy Model	135
Amelec Viloria, Yury Arenis Olarte Arias, Manuel-Ignacio Balaguera, Jenny Paola Lis-Gutiérrez, Mercedes Gaitan Angulo, and Melisa Lis-Gutierrez	
Deep Learning Predictive Model for Detecting Human Influenza Virus Through Biological Sequences	147
M. Nandhini and M. S. Vijaya	
On Machine Learning Approach Towards Sorting Permutations by Block Transpositions	159
P. Jayakumar, Sooraj Soman, and V. Harikrishnan	
Tweet Classification Using Deep Learning Approach to Predict Sensitive Personal Data	171
R. Geetha, S. Karthika, and S. Mohanavalli	
A Study on Abnormalities Detection Techniques from Echocardiogram	181
Imayannosha Wahlang, Goutam Saha, and Arnab Kumar Maji	

Secure I-Voting System with Modified Voting and Verification Protocol	189
S. Ajish and K. S. Anil Kumar	
Hash Tree-Based Device Fingerprinting Technique for Network Forensic Investigation	201
Rachana Yogesh Patil and Satish R. Devane	
A New Method for Preventing Man-in-the-Middle Attack in IPv6 Network Mobility	211
Senthilkumar Mathi and Lingam Srikanth	
Mutual Authentication Scheme for the Management of End Devices in IoT Applications	221
S. Annashree Nivethitha, Chanthini Baskar, and Manivannan Doraipandian	
Finding Influential Location via User Mobility and Trajectory	233
Daniel Adu-Gyamfi, Fengli Zhang, and Fan Zhou	
Design of a Morphological Generator for an English to Indian Languages in a Declension Rule-Based Machine Translation System	247
Jayashree Nair, R. Nithya, and M. K. Vinod Jincy	
Automatic Design of Aggregation, Generalization and Specialization of Object-Oriented Paradigm Embedded in SRS	259
B. N. Arunakumari and Shivanand M. Handigund	
Fuzzy Logic-Based Decision Support for Paddy Quality Estimation in Food Godown	279
Chanthini Baskar and Manivannan Doraipandian	
Voice-Controlled Smart Assistant and Real-Time Vehicle Detection for Blind People	287
Mojibur Rahman Redoy Md Akanda, Mohammad Masum Khandaker, Tushar Saha, Jahidul Haque, Anup Majumder, and Aniruddha Rakshit	
A Framework for Cyber Ethics and Professional Responsibility in Computing	299
J. K. Alhassan, E. Abba, Sanjay Misra, Ravin Ahuja, Robertas Damasevicius, and Rytis Maskeliunas	
Detection of Malicious URLs on Twitter	309
Nureni Ayofe Azeez, Oluwadamilola Atiku, Sanjay Misra, Adewole Adewumi, Ravin Ahuja, and Robertas Damasevicius	

Human Rights' Issues and Media/Communication Theories in the Wake of Artificial Intelligence Technologies: The Fate of Electorates in Twenty-First-Century American Politics	319
I. A. P. Wogu, Sanjay Misra, C. O. Roland-Otaru, O. D. Udo, E. Awogu-Maduagwu, and Robertas Damasevicius	
Modeling and Simulation of Impedance-Based Algorithm on Overhead Power Distribution Network Using MATLAB	335
Olamilekan Shobayo, Olusola Abayomi-Alli, Modupe Odusami, Sanjay Misra, and Mololuwa Safiriyu	
The Utilization of the Biometric Technology in the 2013 Manyu Division Legislative and Municipal Elections in Cameroon: An Appraisal	347
P. A. Assibong, I. A. P. Wogu, Sanjay Misra, and Daspan Makplang	
Integrating NFC and IoT to Provide Healthcare Services in Cloud-Based EHR System	361
Raghavendra Ganiga, Radhika M. Pai, M. M. Manohara Pai, Rajesh Kumar Sinha, and Saleh Mowla	
An Approach to Study on MA, ES, AR for Sunspot Number (SN) Prediction and to Forecast SN with Seasonal Variations Along with Trend Component of Time Series Analysis Using Moving Average (MA) and Exponential Smoothing (ES)	373
Anika Tabassum, Masud Rabbani, and Saad Bin Omar	
Machine Learning Approach for Feature Interpretation and Classification of Genetic Mutations Leading to Tumor and Cancer	387
Ankit Kumar Sah, Abinash Mishra, and U. Srinivasulu Reddy	
Design and Implementation of Hybrid Cryptographic Algorithm for the Improved Security	397
Pavithra Kanagaraj and Manivannan Doraipandian	
A Real-Time Smart Waste Management Based on Cognitive IoT Framework	407
Sujit Bebortha, Nikhil Kumar Rajput, Bibudhendu Pati, and Dilip Senapati	
A Proposed Continuous Auditing Process for Secure Cloud Storage	415
Thaharim Khan and Masud Rabbani	
Joy of GPU Computing: A Performance Comparison of AES and RSA in GPU and CPU	425
R. Kingsy Grace, M. S. Geetha Devasena, and S. Manju	

Domain-Independent Video Summarization Based on Transfer Learning Using Convolutional Neural Network	435
Jesna Mohan and Madhu S. Nair	
Deep Neural Network-Based Human Emotion Recognition by Computer Vision	453
Samsani Surekha	
A Method for Estimating the Age of People in Forensic Medicine Using Multivariable Statistics	465
María Barraza Salcedo, Alexander Parody, Yeis Borre, Amelec Viloria, and Jorge Cervera	
Cluster of Geographic Networks and Interaction of Actors in Museums: A Representation Through Weighted Graphs	475
Jenny Paola Lis-Gutiérrez, Amelec Viloria, Juan Carlos Rincón-Vásquez, Álvaro Zerda-Sarmiento, Doris Aguilera-Hernández, and Jairo Santander-Abril	
Security Scheme Under Opensource Software for Accessing Wireless Local Area Networks at the University Campus.	487
Francisco Sánchez-Torres, Jorge González, and Amelec Viloria	
Pragmatic Evaluation of the Impact of Dimensionality Reduction in the Performance of Clustering Algorithms	499
Shini Renjith, A. Sreekumar, and M. Jathavedan	
Secret Life of Conjunctions: Correlation of Conjunction Words on Predicting Personality Traits from Social Media Using User-Generated Contents	513
Ahmed Al Marouf, Md. Kamrul Hasan, and Hasan Mahmud	
Text Classification Using K-Nearest Neighbor Algorithm and Firefly Algorithm for Text Feature Selection	527
R. Janani and S. Vijayarani	
Performance Evaluation of Traditional Classifiers on Prediction of Credit Recovery	541
Mohammad Rajib Pradhan, Sima Akter, and Ahmed Al Marouf	
Cost-Sensitive Long Short-Term Memory for Imbalanced DGA Family Categorization	553
R. Mohammed Harun Babu, R. Vinayakumar, and K. P. Soman	
Oil Spill Characterization and Monitoring Using SYMLET Analysis from Synthetic-Aperture Radar Images	565
Mukta Jagdish and S. Jerritta	

Performance Analysis of Machine Learning Algorithms for IoT-Based Human Activity Recognition	579
Shwet Ketu and Pramod Kumar Mishra	
Computing WHERE-WHAT Classification Through FLIKM and Deep Learning Algorithms	593
Nagaraj Balakrishnan and Arunkumar Rajendran	
Reshaped Circular Patch Antenna with Optimized Circular and Rectangular DGS for 50–60 GHz Applications	609
Ribhu Abhusan Panda, Rabindra Kumar Mishra, Udit Narayan Mohapatro, and Debasish Mishra	
VLSI Fast-Switching Implementation in the Programmable Cycle Generator for High-Speed Operation	621
D. Punniamoorthy, G. Krishna Reddy, and Vikram S. Kamadal	
A Study of Non-Gaussian Properties in Emotional EEG in Stroke Using Higher-Order Statistics	635
Choong Wen Yean, M. Murugappan, Mohammad Iqbal Omar, Wan Khairunizam, Bong Siao Zheng, Alex Noel Joseph Raj, and Zunaidi Ibrahim	
SAW-Based Sensors for Lead Detection	647
Senorita Deb	
Efficient Eye Diagram Analyzer for Optical Modulation Format Recognition Using Deep Learning Technique	655
Viay Sudhakar Ghayal and R. K. Jeyachitra	
Low Complexity Indoor Positioning System with TDOA Algorithm Using Hilbert Transform Method	667
Venkata Balakrishna Mantina and R. K. Jeyachitra	
Image Encryption Based on Pseudo Hadamard Transformation and Gingerbreadman Chaotic Substitution	681
S. N. Prajwalasimha and Sidramappa	
Optimization and Performance Analysis of QPSK Modulator	691
S. M. Usha and H. B. Mahesh	
Power and Delay Efficient ALU Using Vedic Multiplier	703
Dhanunjay Lachireddy and S. R. Ramesh	
Optimization and Implementation of AES-128 Algorithm on FPGA Board	713
Ankur Singhvi	

An Analytic Potential Based Velocity Saturated Drain Current, Charge and Capacitance Model for Short Channel Symmetric Double Gate MOSFETs	723
Vyas Murnal and C. Vijaya	
Evaluation of Emotion Elicitation for Patients With Autistic Spectrum Disorder Combined With Cerebral Palsy	737
N. Sindhu and S. Jerritta	
Forest Fire Detection Based on Wireless Sensor Network	751
Harsh Deep Ahlawat and R. P. Chauhan	
CB-ACPW Fed SRR Loaded Electrically Small Antenna for ECG Monitoring	767
K. Sajith, J. Gandhimohan, and T. Shanmuganantham	
CPW-Fed Single, Dual, and Triple-Channel Slotted and Top-Loaded DGS Antennas for UWB Range	777
J. Gandhimohan and T. Shanmuganantham	
ECG Morphological Features Based Sudden Cardiac Arrest (SCA) Prediction Using Nonlinear Classifiers	789
M. Murugappan, Hui Boon, Alex Noel Joseph Raj, Gokul Krishnan, and Karthikeyan Palanisamy	
Analysis of Rician Noise Restoration Using Fuzzy Membership Function with Median and Trilateral Filter in MRI	803
R. Kala and P. Deepa	
DLBPS: Dynamic Load Balancing Privacy Path Selection Routing in Wireless Networks	817
R. Jayaprakash and Radha Balasubramanian	
Power Optimization of a 32-Bit ALU Using Distributed Clock Gating Technique	831
Roopa R. Kulkarni and S. Y. Kulkarni	
A Power-Efficient GFDM System	843
Chhavi Sharma, Arvind Kumar, and S. K. Tomar	
Energy-Efficient Cross-Layer Multi-Chain Protocol for Wireless Sensor Network	853
P. M. Prathibhavani, H. V. Adarsh Sagar, and T. G. Basavaraju	
An Advanced Model-Centric Framework for Verification and Validation of Developmental Aero Engine Digital Controller Performance	875
Vivekanand Sanjawadmath, R. Suresh, A. N. Vishwanatha Rao, and Deva Prasad Nayak	

Performance Analysis of Wavelet Transform in the Removal of Baseline Wandering from ECG Signals in Children with Autism Spectrum Disorder (ASD)	885
B. Anandhi, Selvaraj Jerritta, M. Murugappan, Himangshu Das, and Gurusamy Anusuya	
Design of S-Band Balanced Amplifier Using Couplers	899
Neeraja Neralla and Sangam V. Bhalke	
Performance of Ultra Wide Band Systems in High-Speed Wireless Personal Area Networks	911
Jihad Daba	
Statistical Descriptors-Based Image Classification of Textural Images	937
C. Bagavathi and O. Saraniya	
Sum Modified Laplacian-Based Image Fusion in DCT Domain with Super Resolution	945
G. Sreeja and O. Saraniya	
Effective Compression of Digital Images Using SPIHT Coding with Selective Decomposition Bands	955
V. V. Satyanarayana Tallapragada, B. Bhaskar Reddy, V. Ramamurthy, and Jaya Krishna Sunkara	
Reconfigurable LUT-Based Dynamic Obfuscation for Hardware Security	963
Jaxin Baby, N. Mohankumar, and M. Nirmala Devi	
Detection and Control of Phishing Attack in Electronic Medical Record Application	975
U. Aneesh Kini, M. Poornananda Bhat, Raghavendra Ganiga, Radhika M. Pai, M. M. Manohara Pai, and H. C. Shiva Prasad	
Smart Apron Using Embroidered Textile Fractal Antenna for E-Health Monitoring System	987
Shruti Gite and Mansi Subhedar	
Design of Modified Wideband Log Periodic Microstrip Antenna with Slot for Navigational Application	997
Shahid S. Modasiya and Jagdish M. Rathod	
Machine Learning Approach to Condition Monitoring of an Automotive Radiator Cooling Fan System	1007
R. Meena, Binoy B. Nair, and N. R. Sakthivel	

Sensors Network for Temperature Measurement in a Cocoa Fermentator	1021
Deisy C. Paez, Juan. F. Jojoa, Edith Moreno, Luis J. Lopez, Jorge G. Díaz, Annie S. Zamora, Carlos M. Rivera, and Manuel A. Márquez	
Communication-Aware Virtual Machine Placement in Cloud	1031
Raghavendra Achar, Shreenath Acharya, X Shifali, Vrinda Mallur, T. R. Reshma, and Unnathi Bhandary	
Migration from Silicon to Gallium Nitride Devices—A Review	1043
H. Swathi Hatwar, K. Suryanarayana, M. Ravikiran Rao, and Raksha Adappa	
High-Speed Modified DA Architecture for DWT Computation in Secure Image Encoding	1057
Renjith V. Ravi, Kamalraj Subramaniam, and G. K. D Prasanna Venkatesan	
Design and Randomness Evaluation of a Chaotic Neural Encryption and Decryption Network for TRNG	1069
C. Guru Prasath, V. Rakshita Vishali, and N. Mohankumar	
Circuit Modelling of Graphene and Carbon Nanotube-Based Multilayer Structures for High-Frequency Absorption	1079
V. Shanmuga Suriya, J. Avinash, Binoy B. Nair, and T. Rajagopalan	
PI and Sliding Mode Control of QUANSER QNET 2.0 HVAC System	1089
Jerry Jacob and S. Selvakumar	
Robust Control of Position and Speed for a DC Servomotor System Using Various Control Techniques	1101
Vineet Kumar, Veena Sharma, O. P. Rahi, and Utsav Kumar	
MPC-Based Temperature Control of CSTR Process and Its Comparison with PID	1109
Utsav Kumar, Veena Sharma, O. P. Rahi, and Vineet Kumar	
Microgrid Integration in Kerala Power Grid—A Case Study	1117
K. S. Saritha, Sasidharan Sreedharan, and Usha Nair	
Design of Control System for Autonomous Harvester Based on Navigation Inputs	1129
Avishhek Chatterjee and K. P. Peeyush	
Design and Optimization of Microgrid as EV Charging Source	1139
Saadullah Khan, Furkan Ahmad, Mohammad Saad Alam, and Mahesh Krishnamurthy	

A Review on Topologies for Transformer-Less Grid-Connected PV Inverter	1151
Shaik Gouse Basha and M. Venkatesan	
An Enhanced Space Vector PWM Technique for Neutral Point Balancing in Three-Level NPC Inverter	1167
Mrugnyani Pawar, Nayan Karale, and S. H. Pawar	
Green Energy Integration to Utility Grid with Power Quality Improvement by Using APF	1179
Kranthi Kumar Vanukuru and B. Pakkiraiah	
An Air Conditioning System with Power Quality Improvement	1193
Shubham Mishra and Shikha Singh	
Hybrid Energy Storage System for Electric Vehicle Using Battery and Ultracapacitor	1203
Rajesh and A. Vijayakumari	
Sequential Selection-Based Predictive Direct Torque Control for Cascaded H-Bridge Inverter-Driven Induction Motor Drive	1215
Vishnu Prasad Muddineni, Anil Kumar Bonala, and Hareesh Kumar Yada	
Synchronization of EV Charging Station Battery with Micro-grid Based on Virtual Synchronous Machines Control Strategy	1225
M. Shylaja and M. R. Sindhu	
Design and Control of Capacitor-Supported Dynamic Voltage Restorer for Mitigation of Power Quality Disturbances	1237
Mohan Tasre, Gajanan Dhole, Saurabh Jadhao, and Rajesh Sharma	
Research on State Space Modeling, Stability Analysis and PID/PIDN Control of DC-DC Converter for Digital Implementation	1255
V. Viswanatha, R. Venkata Siva Reddy, and Rajeswari	
Slip Frequency Control Technique for DFIG Based Wind Turbine Generators	1273
R. Mahalakshmi and K. C. Sindhu Thampatty	
Static Eccentricity Fault in Induction Motor Drive Using Finite Element Method	1291
Sreedharala Viswanath, N. Praveen Kumar, and T. B. Isha	
Overview and Recent Scenario of Biomass Gasifier Plants in Tamilnadu—A Field Survey	1303
M. Mohamed Iqbal, Kashif Ahmed, and Nazia Fathima	
Successive Optimization Using Analytical Method for Multiple DG Placement in Primary Distribution System	1317
Vani Bhargava, S. K. Sinha, and M. P. Dave	

Service-Oriented Network Architecture for Future Automotive Networks	1327
S. Prasanna Vadanan, Balasubramanian Srimukhee, A. Suyampu Lingam, and D. Prasannavadana	
Modeling and Analysis of Single-Phase Modified Unipolar Sinusoidal PWM Inverter with Compensator	1335
K. B. Bommegowda, K. Suryanarayana, and Durga Prasad	
Simulation, Fabrication and Characterization of Circular Diaphragm Acoustic Energy Harvester	1351
Vasudha Hegde, H. M. Ravikumar, and Siva S. Yellampalli	
Mitigation of Voltage Sags and Swells in the Distribution System Using Dynamic Voltage Restorer	1359
P. V. Manitha and Manjula G. Nair	
DC Micro-Grid-Based Electric Vehicle Charging Infrastructure—Part 1	1369
Abhishek K. Saxena and K. Deepa	
DC Micro-Grid-Based Electric Vehicle Charging Infrastructure—Part 2	1385
Abhishek K. Saxena and K. Deepa	
A Comparative Study of Controllers for QUANSER QUBE Servo 2 Rotary Inverted Pendulum System	1401
Anjana Govind and S. Selva Kumar	
Design and Implementation of 400 W Flyback Converter Using SiC MOSFET	1415
M. Ravikiran Rao, K. Suryanarayana, H. Swathi Hatwar, and Adappa Raksha	
Development of a Cost-Effective Module Integrated Converter for Building Integrated Photovoltaic System	1425
L. Ashok Kumar and Madhuvanthani Rajendran	

DLBPS: Dynamic Load Balancing Privacy Path Selection Routing in Wireless Networks

R. Jayaprakash and Radha Balasubramanian

Abstract The Adhoc Network (MANET) is a set of nodes inside a particular group which communicates one another inside the network. These are generally packet nodes that travel and subjected for variation in the routing based on the requirement of the mobility. A proper routing technique is essential for the transmission of data packet from the source to the destination. A cluster-based routing protocol is accessed on its capability to distribute transfer over the network mobile nodes, and a superior routing protocol realizes this without establishing unacceptable delay. This paper presents novel dynamic load balancing privacy path selection (DLBPS) algorithm for mobile ad hoc networks to address the issue of the packets' strength when transmitted and also on the security aspect by addressing attack prevention. The experiment is carried out as a simulation in NS2 framework. The DLBPS method performs gateway mobility load balancing in the network order to achieve higher aggregated throughput among data transfer. Meanwhile, the proposed algorithm establishes detection, privacy collector privacy manager, and privacy propagator to complete the privacy path selection. The experimental result proves that the proposed mechanism outperforms the existing HsecGR and Trust-ECC methods.

Keywords Cluster · Load balancing · Gateway · Privacy preserving · Path selection

1 Introduction

A mobile ad hoc network (MANET) is a kind of ad hoc network that consists of many nodes that are mobile and wireless in nature forming a temporary network in the absence of the support from stable “network infrastructure.” In MANETs,

R. Jayaprakash (✉)

Department of Computer Science, Nallamuthu Gounder Mahalingam College & STC,
Coimbatore, India
e-mail: jpinfosoft@gmail.com

R. Balasubramanian

Department of Information Technology, Sri Krishna Arts and Science College, Coimbatore, India

Table 1 Simulation parameters

Parameters	Symbol and value
Mobile nodes	MN & 5-200 in steps of 10
Simulation area	Row × Column & 1000 × 1000
Transmission range	TR & 5-200 in steps of 10
Distributed weights	$D_{w1}, D_{w2}, D_{w3}, \dots, D_{wn}$ & (0.1, 0.04, 0.05, 0.2, 0.5)
Node energy	E_{node} & 100 Joules
Boosting energy	E_{boost} & 100J/bit/m ²

all nodes are capable to move and still connected using multi-hop communication. The foremost goal of this network is provisioning of efficient communication by incorporating routing functionality into mobile network nodes. A MANET network is decentralized networked system where the nodes themselves are responsible for all activities within the network such as topology discovery and packets or message delivery.

The MANET can be logically depicted in the form of clusters through assembling together group of nodes that can be managed by cluster heads. Within a particular cluster, the cluster head (CH) is interconnected to all the nodes in its cluster [1], (Chatterjee M, SK Das, D Turgut, 2002). Clustering is vital technique in a MANET often utilized to structure its hierarchy and organization. The use of clusters assists to simplify the complexity in how information about cluster nodes are managed as well as approaches to resolving or reducing network blocking.

Cluster-based routing is one of the routing methods with regard to MANETs (Ephremides, Jeffery Wieselthier, Dennis Baker, 1987) [2] in which several clusters of mobile nodes tend to be shaped using each cluster featuring its own cluster head that accounts for routing between clusters. “Clustering of nodes saves energy along with transmission bandwidth in ad hoc networks.”

2 Cluster Network Model

In the ad hoc network, the packets are sent from a source to destination using the multi-hop approach by selecting suitable nodes in the middle data which are transmitted across a peer-to-peer network in the absence of a centralized server in the available protocols. These are organized dynamically by self as in case of an ad hoc topology.

Clustering (Bednarczyk W, P Gajewskil, 2013), [3] is a methodology where relatively large network is segmented into smaller groups having some characters or behavior in a similar fashion. This is done based on some protocols in order to make the difference visible in-between the available nodes in other sub networks. The nodes which are not related to each other are combined to arrive at a structure. All nodes are assigned predefine functions and constraints, namely cluster head, the gateway,

and nodes of the member of cluster. This area which is segmented is called a cluster which bears a head and acts as a co-ordinator and is selected by every cluster.

Cluster head (CH) is similar to other nodes, but performs the functionality as a supervisor and is responsible for functions such as cluster management and updation of routing table and is responsible to identify new routes. All the other nodes are members inside a cluster, and the node through which the intercommunication occurs is called as gateway node. The cluster head is responsible for the data transmission among the nodes inside a cluster, and outer communications if any are done through the CH through the gateway nodes.

The clustering is done in a way that all the nodes inside a cluster are subjected to transmit a HAI or hello message along with their IP address. The CH in further appends the IP address of the nodes that are members to their self-messages that are controlled. The connection is considered as broken if the member node fails to get three control messages in the process of selection of clusters. In case of broken communication, the corresponding node goes in search of a new CH. To confirm the new CH, The hello message is transmitted along with its IP address.

The objective of the research is to propose a protocol for routing which is based on the cluster technology and which is privacy preserving in a MANET environment. The main aim is to effectively partition the inside and outside broadcasting of cluster message in a secured fashion. To minimizing a load balancing of low-maintenance clustering schemes intend at providing secure cluster framework flow for cluster-based routing protocols with slight cluster preservation cost. By preventive re-clustering positions or minimizing precise control packets for clustering, the cluster configuration can be preserved well without extreme utilization of network resources for cluster preservation.

The remaining of the paper is segmented and presented as follows: Literature review is detailed in Sect. 3; in Sect. 4, we have discussed dynamic load balancing privacy path selection (DLBPS). Sections 5 and 6 discuss the performance evaluation and conclusion, respectively.

3 Literature Review

(*R. Jayaprakash, B. Radha, 2018*) [4, 5] came up with the networking group in which the privacy is preserved. Here, the CH is responsible for the intercommunications inside a cluster with the aid of a battery in addition which is dominant in evaluating the members of the cluster. As the information packets are subjected to go in and out of the network, the overhead in testing the stability of the network becomes crucial. A routing protocol based on the clustering technology is proposed to achieve privacy preservation. The experiment is simulated using the NS2 tool. The complete process was based on the routing that happens in the source and on-demand process. The proposed protocol is based on the CH selection, and the same is applied in ad hoc framework by a variation by implementing a communication exchange on demand between the nodes that are mobile in a ad hoc network.

(*Gupta, A.K., Sadawarti, H., Verma, A.K, 2011*), [6] put forth the problem when routing is considered and the research challenges in the MANET environment and got a large number of responses from the researchers round the globe. In order to address the problem associated with routing, various protocols were proposed and still researchers are working for man more such protocols to be proposed. To identify the best protocol is a tedious task as the behavior and performance of each protocol vary in different scenarios as when size and topology of the network are considered. The detailed surveys of the existing protocols are elaborated with its functions and characters. A comparative study was also made on the available methods that are very much used for arriving at a routing decision.

(*Kaur, H., Singh, H., Sharma, A, 2016*), [7] explained the concept of MANET which are tented to have organized in a self-mannered networks through which there is no need of connections to be established for the transmission of information. These suffer from different factors in terms of scalability, topology, and higher mobility. These are also subjected to damage owing to its large mobile nature. Routing on the basis of the topology is subjected to fail because of the dynamic change in the topology itself. A new concept of routing based on the geography of the nodes was introduced. These proved to be more stable and efficient even in the case of dynamic change in the location of the nodes. Two methods, namely the hybrid routing and geographic routing, are studied in this paper

(*Sarika, S., Pravin, A., Vijayakumar, A., Selvamani, K, 2016*) In wired networks, [8] there are a large number of barriers when communication occurs. These pave the way for the intruders to get pass the firewalls. Hence, these have to be made to get through secured gateways for safe transmission of data. Unlike the wired networks, the wireless sensor networks are considered to be less safe as the nodes follow a dynamic topology and also the power consumed will be more. The mobility is the key factor to be taken for account as it paves the way for attackers leading to collapsing the complete network. The problems associated with the wireless mobile networks are discussed in detail.

(*Boulaiche, M., Bouallouche-Medjkoune, L, 2017*), [9] proposed a new technique which takes into account the geographic locations and came up with a routing concept based on the location of the nodes under communications from source to destination. These also reduce the overhead of routing control and guarantee accurate delivery of the message without time delay over such networks. The basic problem with this approach is that all the nodes are considered as trusted which paves the way for malicious content which in turn disrupts the forwarding of the packet. A proposal was given for the new approach for the security against attacks possible. The nodes that lie in between are tested for its authenticity and integrity and send back the acknowledgment upon verification. This prevents the packet being dropped in middle due to attacks. Symmetric cryptography is used as an encryption standard. They proved to be efficient even if there are compromised packets in the network.

(*Kaur, M., Kaur, S, 2016*), [10] discussed routing protocols methods which are employed to send and obtain information from origin to vacation spot correctly. Clustering structured routing protocol methods are the methods through which course plotting will certainly be done by means of grouping. Clustering is often a practice

where a big network is divided right small groups as well as communities. The leading purpose of clustering is usually to boost routing protocols in the network stratum through reducing the size of the particular routing protocol platforms as well as lessens improve over head through updating the particular routing protocols platforms soon after topological alterations take place. This kind of report is evaluated as well as applied for the particular functionality associated with current cluster structured routing protocols method that the election associated with cluster is dependent on the particular minimum Ids associated with node in cluster. The authors evaluated the particular functionality associated with CBRP method and presented each of our outcomes.

(Rajasekar, S., Subramani, A., 2016), [11] briefed that a MANET has a great number of nodes that are subjected to move in a dynamical manner. In such networks, the devices used for computation will require a large and costly infrastructure. In these networks, the nodes are subjected to move dynamically from one place to other and try to get synchronized with other nodes that are nearer. The topology can also change due to the mobility aspect. The main limitation of the MANET is the energy that will be available for each node for successful transmission and the lifetime of a node. Hence, the energy efficiency is a vital factor and was discussed elaborately.

4 Dynamic Load Balancing Privacy Path Selection

It is a vital process that aims to control the traffic in a complete network and also assures of distributing the traffic evenly over the network. The load will not be evenly distributed if there are user demands that are uneven and are more common in case of a MANET. The nodes present inside a network get more congestion and naturally vulnerable as a consequence owing to the fact of their location and the role assigned to them. The congestion will normally be more at the center rather in the end due to the fact that major of the nodes travel through the center part else would be put in a position to have contented with the relatively large number of neighboring nodes in the medium. The gateway nodes are subjected to more congestion since the traversal has to be done through the intermediate traffic domain. The congestion has to be avoided in such cases to maintain the connectivity in the network and the services they provide. Figure 2 depicts the dynamic load balancing privacy path selection (DLBPS) approach.

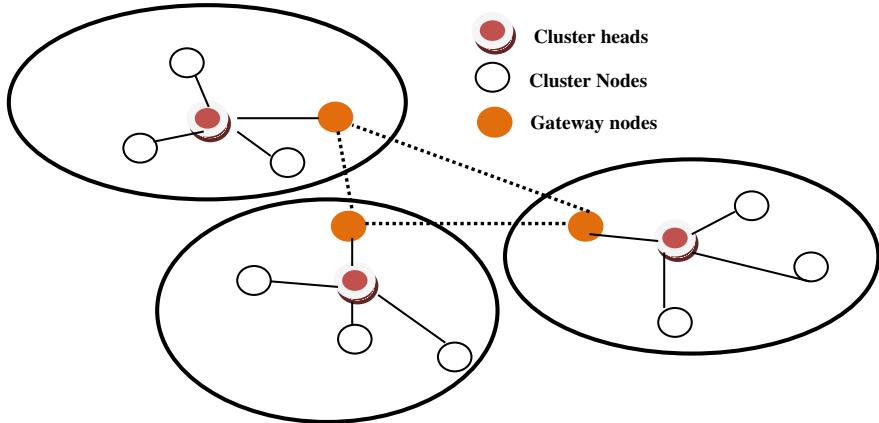
4.1 Network and Mobility Model

In process of network formation [4, 5] is ranked by forming graph and was already presented in the previous work (R. Jayaprakash, B. Radha, 2018). In the mobility model, V_{max} and T_{pause} denote the two important key metrics that depict the node's behavior. If the V_{max} is minimum and the pause time T_{pause} is long, there exists a

strong topology which will be more stable. Contrarily, if the speed of the node is more, (i.e., V_{max} is more) and time of pause is T_{pause} is less, there will be high dynamicity among the nodes. By changing the values of these metrics, different scenarios for mobility can be achieved for variety of node's speed. The metric of mobility is to calculate in a quantified notation of the node's notation speed. This relative measure of speed between the node i and j at a given time t is

$$\text{Speed}(i, j, t) = \left| V_i(t) - \frac{V_j(t)}{M} \right| \quad (1)$$

The metric of the mobility is then calculated with reference to the speed in a relative manner which is taken as a mean of all the speeds in all the pairs of nodes in the entire time. The function is denoted with a formal notation as


$$M = \frac{1}{|i, j|} \sum_{i=1}^N \sum_{j=i+1}^N \frac{1}{T} \int_0^T \text{Speed}(i, j, t) dt \quad (2)$$

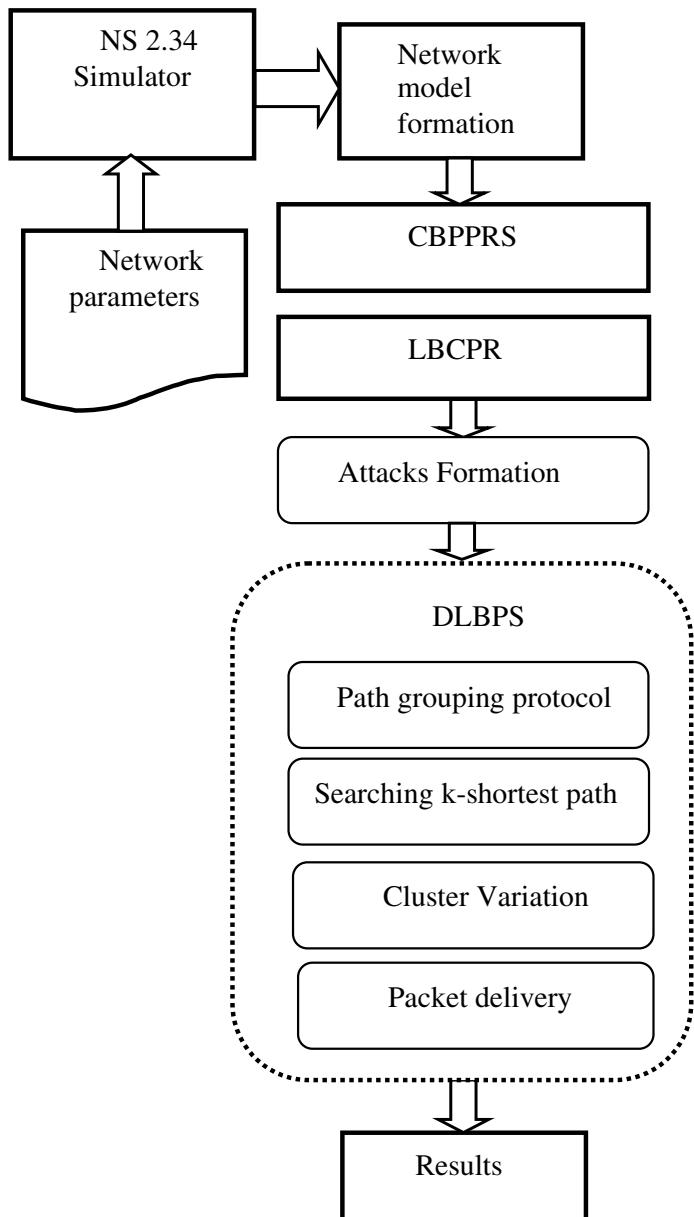
where $|i, j|$ is the count of pairs of node that are distinct n is the overall count of the node in entire field of simulation. (i.e., the complete ad hoc network) and T is the time of simulation.

4.2 *Gateway Mobility Load Balancing*

This is a task of even distribution of interdomain traffic in an orderly manner and also efficiently in between the gateways and the primary objective being to increase the throughput as depicted in Fig. 1. The primary precondition is that it should have more than one gateway that are placed in the network which ensures the connection to the gateways present outside the network for transmission. This can also be the Internet. All the interdomain traffic are subjected to go through the nodes that are the gateways. They become more congested, and hence, many gateways need to be deployed in the network which enables the complete capacity of the network increased and the probability of congestion decreases.

The redundancy is also reduced which paves the way for increase in robustness. If any of the gateways experiences a failure, the others that are in stand-by will take care of the network. The policy of fairness is also achieved as with single gateway, different nodes enjoy different capacities that are based on the gateway's proximity. The mean distance to reach the gateway will be same in case if many gateways are deployed. Even though this technique proves to be more efficient than others, it also suffers some drawbacks. The traditional methods lack a concrete method to overcome these issues. When a short path is arrived, there are more possibilities that a gateway will be overloaded leading to collapse in the entire network. Hence, appropriate load balancing techniques are to be deployed for removing the potential risk involved and

Fig. 1 Cluster network model


to ensure that there is no degrade in the aspect of performance. Cluster-based privacy preserving routing selection (CBPPRS) [4] is already elaborated in the previous work (*R. Jayaprakash, B. Radha, 2018*). Here, a DEFINED-VALUE concept is used between the CHs and the nodes such that all the nodes in the given time of a network are within h hops of a CH.

4.3 LBCPR: Load Balancing Cluster-Based Privacy Routing

The LBCPR was already presented by both authors (*R. Jayaprakash, B. Radha, 2018*) [4, 5] for load imbalance in the network and the partiality or favoritisms in picking up centrally located nodes for data transfer. The proposed novel cluster based routing metric, load and a minimization principle are to make a decision on a path that occupies mobile nodes with fewer load weight on them. In LBCPR, new metric called *load* will tell us the estimated load a mobile node (mn) is focused to in a network, and its value will specify the quantify of current load. In this model, link searching and send respond algorithms performs cluster load field accurately.

4.4 Dynamic Load Balancing Privacy Path Selection (DLBPS)

The DLBPS searching is achieved by k -path measure in the MANET, and this can be either in one direction or two directions. Hence, the host must be known its neighbor and the related information. The data packets are transmitted on a regular interval of time by sensing the neighbors. These are transmitted only a hop away and are not

Fig. 2 Dynamic load balancing privacy path selection flow

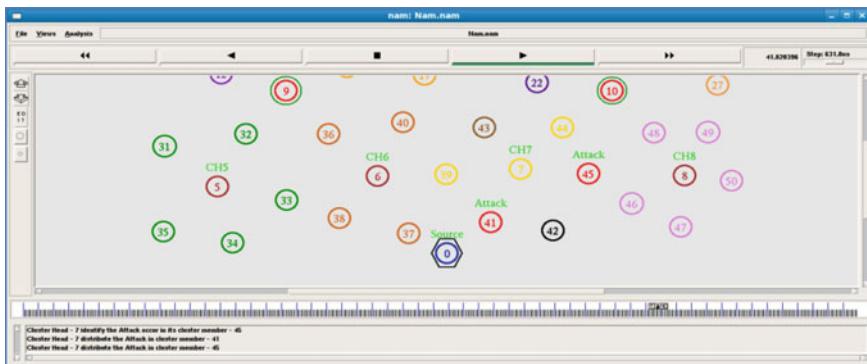


Fig. 3 Attacks formation

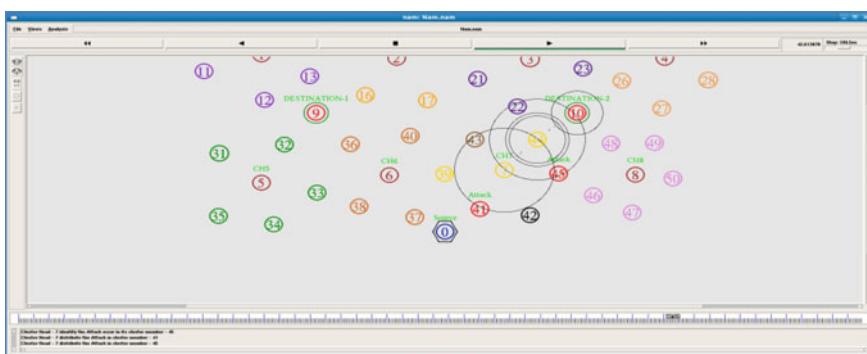


Fig. 4 DLBPS result

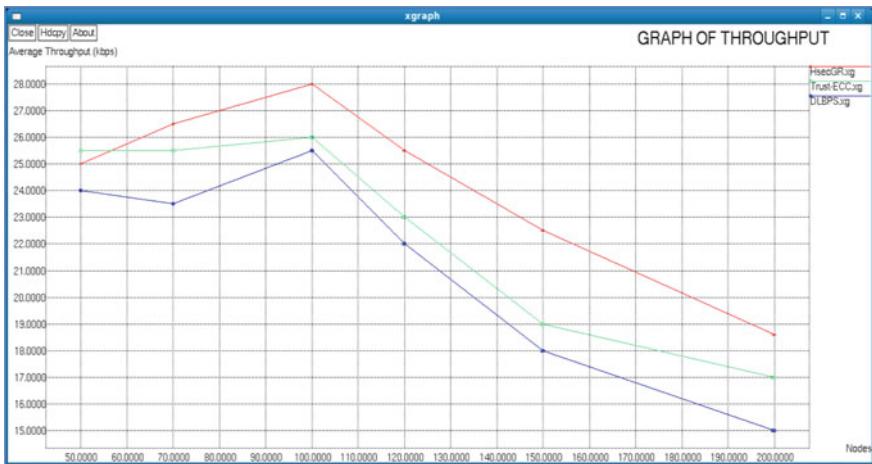



Fig. 5 Graph of packet delivery ratio

Fig. 6 Graph of average throughput

pushed further. When the host 1 gets the Hello message from Host II, The status of the second host is set to be asymmetric in the routing table.

DLBPS algorithm also helps in predicting the attacks that are distributed in an MANET. The scheme of investing the scheme's path of a protocol will examine all the nodes in the available network, and when any unusual behavior is found, the invocation of a distributed algorithm is done to confirm that the node is out of any malicious content. This method works along with other security metrics which are available in every node inside a network. The computations are given in terms of: (i) detection, (ii) privacy collector, (iii) privacy manager, and (iv) privacy propagator.

```

Algorithm 1: Dynamic Load Balancing Privacy Path Selection (DLBPS)
Initialize  $CH \leftarrow 0$ ;  $LBCPR \leftarrow 0$ ;  $DLBPS \leftarrow 0$ ;

Process
Step 1: The node has to travel from source to destination through a protocol which starts the identification of the route.. During the identification process, source node transmits RREQ packets through the nodes which are available nearer.

Step 2: Searching neighbor cluster list present source to destination.

Step 3: Check gateway mobility balancing (gmb)

Step 4: if  $gmb \neq CH$  then
     $CH = CH + 1$ 
    end if

Step 5: if  $gmb\_count > nodecount\_thresh$  then
    //Target and all previous nodes are declared.
    forward (attack link);
    break;
end if

Step 6: select privacy cluster path for packet delivery

```

5 Performance Evaluation

The proposed system considers 50 to 200 nodes *Dynamic Load Balancing Privacy Path Selection (DLBPS)* in mobile ad hoc network, with nodes and is implemented on a random basis in a area of $1000 \text{ m} \times 1000 \text{ m}$.. The parameters considered for simulation are as mentioned below. Packet delivery ratio (PDR) is described as the fraction between the number of packets sent and received in destination. The proposed method ensures more PDR ratio when compared with existing HsecGR [9] (*Boulaiche, M., Bouallouche-Medjkoune, L, 2017*) and Trust-ECC (*S. Syed Jamaesha and S. Bhavanim, 2018*) methods [12].

The throughput comparison is shown in Fig. 7 where the blue line indicate the performance of the proposed algorithm and the red and green lines of the performances of other existing methods. [12]. The performance is measured by taking the average throughput in Y-axis and number of nodes in X-axis.

Figure 8 depicts the average performance delay, and it is obvious that the proposed method outperforms the other existing proposals [9, 12]. The average delay performance is taken as the product of time taken to get and deliver a packet. It describes

Fig. 7 Graph of average delay

the average delay of performance result. It is the product of time taken to obtain packets delivered to number of mobile nodes in network.

6 Conclusion

The dynamic load balancing privacy path selection (DLBPS) algorithm is evaluated and analyzed for mobile ad hoc networks on the strength of packet transmission and attack prevention. The DLBPS method performs gateway mobility load balancing in the network order to achieve higher aggregated throughput among data transfer. Meanwhile, the proposed algorithm establishes detection, privacy collector privacy manager, and privacy propagator to complete the privacy path selection. An experimental result shows that the proposed algorithm performs better than existing HsecGR and Trust-ECC methods³

References

1. Chatterjee, M., SK Das., Turgut,D., : WCA: a weighted clustering algorithm for mobile ad hoc networks. *Clust. Comput.*, Kluwer Adademic Publishers, Manufactured in The Netherlands, Vol. 5 (2002) 193–206
2. Ephremides., Jeffery Wieselthier., Dennis Baker., : A Design Concept for Reliable Mobile Radio Networks with Frequency Hopping Signaling. *Proceedings of the IEEE* Vol. 75, No. 1, (1987) 56–72

3. Bednarczyk, W., Gajewskil,p., : An enhanced algorithm for MANET clustering based on weighted parameters. *Universal J. Commun. Netw.* Vol. 1(3) (2013) 88–94
4. Jayaprakash.R., and Radha,B., : CBPPRS: Cluster Based Privacy Preserving Routing Selection in Wireless Networks, *International Journal of Engineering & Technology*, Vol. 7 (3.12) (2018) 439–443
5. Jayaprakash.R., and Radha,B., : LBCPR: Load Balancing Cluster Based Privacy Routing In Wireless Networks, *International Conference on Recent Trends in Automation (ICRTA-2018)*
6. Gupta AK, Sadawarti H, Verma AK (2011) Review of various routing protocols forMANETs. *Int. J. Inf. Electron. Eng.* 1(3):251–259
7. Kaur H, Singh H, Sharma A (2016) Geographic routing protocol: a review. *Int. J. Grid Distrib. Comput.* 9(2):245–254
8. Sarika S, Pravin A, Vijayakumar A, Selvamani K (2016) Security issues in mobile adhocnetworks. *Procedia Comput. Sci.* 92:329–335
9. Boulaliche M, Bouallouche-Medjkoune L (2017) Hsecgr: highly secure geographic routing. *J. Netw. Comput. Appl.* 80:189–199
10. Kaur M, Kaur S (2016) Analyze and implementation of cluster based routing protocol inMANETs. *Int. J. Innov. Res. Sci. Eng. Technol.* 5(3):3098–3107
11. Rajasekar S, Subramani A (2016) Performance analysis of cluster based routing protocol For MANET using RNS algorithm. *Int. J. Adv. Res. Comput. Sci. Softw. Eng.* 6(12):234–239
12. S. Syed Jamaesha and S. Bhavani, A secure and efficient cluster based location aware routing protocol in MANET, Springer Science + Business Media, LLC, part of Springer Nature 2018