

STATIC AND DYNAMIC ROUTING PROTOCOLS FOR WIRELESS NETWORKS: AN EFFECTIVE APPROACH

Dr. R. Jayaprakash, Assistant Professor, Department of Computer Science,
Nallamuthu Gounder Mahalingam College, Pollachi, Coimbatore: jpinfosoft@gmail.com

ABSTRACT

The routing protocol area allows you to check the optimum path for digital communication between network nodes. Routers use them to share routing information with alternative routers to with dynamism build global routing tables. Link-state protocols don't "route by rumor." Instead, routers send updates advertising the state of their links (a link may be a directly-connected network). All routers apprehend the state of all existing links among their locus, and store this info in an exceedingly topology table. A distance-vector routing protocol begins by advertising directly-connected networks to its neighbors. These updates area unit sent often (RIP – each thirty seconds; IGRP – each ninety seconds). Neighbors can add the routes from these updates to their own routing tables. Every neighbor trusts this information fully, and can forward their full routing table (connected and learned routes) to each alternative neighbor. Thus, routers absolutely and blindly think about neighbors for route info, a plan referred to as routing by rumor.

Keywords: RIP, IGRP, Router, IGP, EGP, and Links.

I. INTRODUCTION

The zone unit of routing protocols used to check the most advantageous channel for electronic communication between network nodes. Routers use them to contribute to routing data with alternative routers to dynamically build international routing tables. The routing protocols area unit engaged once your organization's network grows to the purpose wherever static routes area unit unmanageable. Fashionable enterprise networks would like dynamic routing tables that mechanically change if there are a unit any traffic or topology changes.

II. DIFFERENT TYPES OF ROUTING PROTOCOLS

There square measure 2 major categories of routing protocols: Exterior entryway Protocol (EGP) and Interior entryway Protocol (IGP). EGP is employed to exchange routing info between autonomous systems. as an example, EGP is employed in knowledge transfers between ISPs (Internet Service Providers) to ISPs or between autonomous systems to ISPs. Whereas, IGP (Interior entryway Protocol) is employed for exchanging routing info between routers at intervals associate degree autonomous system, like knowledge transfers at intervals your organization's native space network (LAN). IGP are often additional classified into 2 categories: Distance-Vector and Link-State Routing Protocols.

Distance-Vector Routing Protocols, routers communicate with neighboring routers, sporadically informing them regarding topology changes.

Whereas in link-state routing protocol, routers produce a roadmap of however they're connected within the network. By calculative the simplest path from that router to each potential destination within the network, link state routing protocols type the routing table. RIP (Routing info Protocol), RIPv2, IGRP (Interior Gateway Routing Protocol), and EIGRP (Enhanced IGRP) square measure a part of Distance-Vector Routing Protocols. However, OSPF (Open Shortest Path First) and IS-IS (Intermediate System to Intermediate System) square measure a part of Link-State Routing Protocols.

Table 1: Nature of Routing Protocols

Nature of Routing Protocols		
Exterior Gateway Protocols (EGP)	Interior Gateway Protocols (IGP)	
Border Gateway Protocol (BGP)	Distance – Vector	Link – State
	RIP IGRP EIGRP	OSPF IS – IS