

(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2022 ONLY)

22PMS104

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS : DECEMBER-2022

COURSE NAME : M.Sc.-MATHEMATICS

MAXIMUM MARKS: 50

SEMESTER: I

TIME : 3 HOURS

ORDINARY DIFFERENTIAL EQUATIONS

SECTION – A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

1. _____ system is called a linear homogeneous system of the n th order.

(a) $x' = A(t)x$ ($t \in I$)	(b) $x^n = A(t)x$ ($t \in I$)
(c) $x' = A(t)nx^{n-1}$ ($t \in I$)	(d) $x' = A^n(t)x$ ($t \in I$)

2. _____ is called a Bessel function of order n of the first kind.

(a) J_y	(b) $J_x(n)$	(c) $J_n(x)$	(d) $J_0(x)$
-----------	--------------	--------------	--------------

3. _____ is a regular singular point for $L(Yy) = y'' + a_1(x)y' + a_2(x)y = 0$

(a) 0	(b) 1	(c) ∞	(d) finite
-------	-------	--------------	------------

4. A zero of a non trivial solution of $L(x) = (p(t)x')' + g(t)x = 0$, ($a < t < b$) is _____.

(a) Converges	(b) diverges	(c) isolated	(d) oscillated
---------------	--------------	--------------	----------------

5. $U_i(\alpha x_1 + \beta x_2) = \alpha U_i x_1 + \beta U_i x_2$. This linear operator U_i is called _____

(a) Linearly independent	(b) Green's formula
(c) Boundary form	(d) complementary boundary form

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES.

(K2)

6. Find the solution of homogeneous system $x' = Ax$ if $n=1$.

7. Define singularities.

8. Define non homogeneous linear systems.

9. Write any one fundamental result.

10. Write the adjoint boundary condition.

SECTION – B (5 X 3 = 15 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Prove that if ϕ_1 and ϕ_2 are two solutions of $L(y) = 0$ on an interval I containing a point x_0 , then $W(\phi_1, \phi_2)(x) = e^{-a_1(x-x_0)} W(\phi_1, \phi_2)(x_0)$.

(OR)

b) Solve $y'' = 3y' + 3y = 0$ 12. a) Solve $x^2 y'' + a(x)x y' + b(x)y = 0$ where a, b have convergent series expansions for $|x| < r_0$

(OR)

b) Derive the indicial Polynomial for $L(y) = x^2 y'' + \frac{3}{2}x y' + xy = 0$ (CONTD.....2)

13.a) Show that the equations the equation $y' = \frac{3x^2 - 2xy}{x^2 - 2y}$ is exact and solve it.

(OR)

b) Prove that ϕ is a real-valued solution of $h(y) \frac{dy}{dx} = g(x)$ on the interval I containing a point

$$x_0 \text{ iff } \int_{\phi(x_0)}^{\phi(x)} h(u) du = \int_{x_0}^x g(t) dt$$

14.a) Prove that if $\phi_1, \phi_2, \dots, \phi_n$ be n linearly independent solutions of $L(y)=0$ on an interval I. and c_1, c_2, \dots, c_n are any constants, then $\phi = c_1\phi_1 + c_2\phi_2 + \dots + c_n\phi_n$ is a solution.

(OR)

b) Let $\phi_1, \phi_2, \dots, \phi_n$ be n solutions of $L(y)=0$ on an interval I satisfying

$\phi_i^{(i-1)}(x_0) = 1, \phi_i^{(i-1)}(x_0) = 0, j \neq i$. If ϕ is any solution of $L(y)=0$ on I, Prove that there are n constants c_1, c_2, \dots, c_n such that $\phi = c_1\phi_1 + c_2\phi_2 + \dots + c_n\phi_n$

15.a) Derive Green's formula.

(OR)

b) Derive Boundary from formula.

SECTION – C (5 X 5 = 25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K4 (Or) K5)

16. a) Prove that two solutions ϕ_1 and ϕ_2 of $L(y)=0$ are linearly independent on an interval I , iff $W(\phi_1, \phi_2)(x) \neq 0$ for all x in I.

(OR)

(b) Let ϕ be any solution of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I containing a point x_0 .

Then prove that for all x in I, $\|\phi(x_0)\| e^{-k|x-x_0|} \leq \|\phi(x)\| \leq \|\phi(x_0)\| e^{k|x-x_0|}$ where

$$\|\phi(x)\| = [\|\phi(x)\|^2 + \|\phi'(x)\|^2]^{\frac{1}{2}}, k = 1 + |a_1| + |a_2|$$

17. a) Derive the Bessel function of zero order of the first kind.

(OR)

b) Evaluated the basis for the Legendre equation $L(y) = (1-x^2)y'' - 2xy' + \alpha(\alpha+1)y = 0$ where α is a constant.

18. a) State and prove Existence theorem.

(OR)

b) State and prove uniqueness theorem.

19. a) State and prove strum's comparison theorem.

(OR)

b) State and prove comparison theorem of Hille-Winter.

20. a) State and prove Strum-Liouville's problem.

(OR)

b) State and prove Picard theorem.
