

(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2022 ONLY)

22PMS103

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS : DECEMBER-2022
COURSE NAME: M.Sc.-MATHEMATICS **MAXIMUM MARKS: 50**
SEMESTER: I **TIME : 3 HOURS**

COMPLEX ANALYSIS**SECTION – A****(10 X 1 = 10 MARKS)**

ANSWER THE FOLLOWING QUESTIONS. (K1)
MULTIPLE CHOICE QUESTIONS.

1. A region is simply connected if its complement with respect to the extended plane is _____.
(a) connected (b) disconnected (c) compact (d) closed
2. A real valued function is said to be harmonic if it satisfies _____.
(a) C-R equations (b) Laplace's equation (c) difference equation (d) none of these
3. Convergence is uniform on every _____ subset.
(a) closed (b) open (c) compact (d) none of these
4. Each function in an equi-continuous family is itself _____.
(a) continuous (b) equi-continuous (c) compact (d) uniformly continuous
5. A function $f(z)$ is said to be periodic with period T if _____.
(a) $f(z+T) = f(z)$ (b) $f(z-T) = f(z)$ (c) $f(zT) = f(z)$ (d) $f(z/T) = f(z)$

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. (K2)

6. State Cauchy's integral formula.
7. State mean-value property.
8. Define entire function.
9. Mention one application of Poisson-Jensen formulas.
10. Define the order of the elliptic function.

SECTION – B**(5 X 3 = 15 MARKS)**

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Prove that a region Ω is simply connected iff $n(\gamma, a) = 0$ for all cycles γ in Ω and all points a which do not belong to Ω .
(OR)
b) State and prove Argument principle.
12. a) If u_1 and u_2 are harmonic in a region Ω , then prove that $\int u_1 * du_2 - u_2 * du_1 = 0$ for every cycle γ which is homologous to zero in Ω .
(OR)
b) State and prove Schwarz lemma.

13. a) State and prove Hurwitz theorem. **(OR)**
 b) State and prove Weierstrass theorem.

14.a) State the condition of total boundedness in terms of the original metric rather than in terms of the auxillary metric. **(OR)**
 b) Prove that a locally bounded family of analytic functions has locally bounded derivatives.

15.a) Prove that a discrete module consists either of zero alone, of the integral multiples nw of a single complex number $w \neq 0$, or of all linear combinations $n_1 w_1 + n_2 w_2$ with integral coefficients of two numbers w_1, w_2 with non-real ratio w_2 / w_1 . **(OR)**
 b) Prove that an elliptic function without poles is a constant.

SECTION – C **(5 X 5 = 25 MARKS)**

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.
(K4 (Or) K5)

16. a) State and prove the general Cauchy's theorem. **K4**
(OR)
 b) State and prove Cauchy's residue theorem. **K4**

17. a) Derive Poisson's formula. **K5**
(OR)
 b) State and prove the reflection principle. **K4**

18. a) State and prove Mitta-effler theorem. **K4**
(OR)
 b) Derive Legendre's duplication formula. **K5**

19. a) Establish Jensen's formula. **K5**
(OR)
 b) State and prove Arzela's theorem. **K4**

20. a) Prove that there exists a basis (w_1, w_2) such that the ratio $r = w_2 / w_1$ satisfies the following conditions: (i) $\text{Im } r > 0$, (ii) $-1/2 < \text{Re } r \leq 1/2$, (iii) $|r| \geq 1$, (iv) $\text{Re } r \geq 0$ if $|r| = 1$. Also prove that the ratio r is uniquely determined by these conditions, and there is a choice of two, four, or six corresponding bases. **K5**
(OR)
 b) Prove that the zeros a_1, \dots, a_n and poles b_1, \dots, b_n of an elliptic function satisfy $a_1 + \dots + a_n \equiv b_1 + \dots + b_n \pmod{M}$. **K5**
