

(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2022 ONLY)

20UMS509

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS : DECEMBER-2022
COURSE NAME: B.Sc-MATHEMATICS (Aided & SF) MAXIMUM MARKS: 70
SEMESTER: V TIME : 3 HOURS

PART – III

MODERN ALGEBRA

SECTION -A

(10 × 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

K1

1. If G is a group such that $(a \cdot b)^2 = a^2 \cdot b^2$ for all $a, b \in G$, then G must be _____.
 a) Finite group b) subgroup c) abelian d) closed
2. A homomorphism ϕ from G into \bar{G} is said to be _____ if ϕ is one – to – one.
 a) A kernel b) an abelian c) a inverse image of G d) isomorphism
3. _____ is an equivalence relation on G .
 a) Conjugacy b) Normalizer c) Partitions d) Normal subgroup
4. The homomorphism ϕ of R into R' is an isomorphism if and only if _____.
 a) $I(0) = \phi$ b) $I(\phi) = (0)$ c) $R(I) = \phi$ d) $R(\phi) = I$
5. Let R be a Euclidean ring and $a, b \in R$. If $b \neq 0$ is not unit in R , then _____.
 a) $d(a) > d(ab)$ b) $d(a) \leq d(ab)$ c) $d(a) = d(ab)$ d) $d(a) < d(ab)$

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. K2

6. Define an abelian group.
7. Define normal subgroup.
8. Define normalizer of a in G .
9. Define Zero divisor.
10. Define Euclidean ring.

SECTION-B

(5 × 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWNG QUESTIONS. K3

11. a) Show that if every element of the group G is its own inverse, then G is abelian.
 (OR)
 b) Prove that HK is a subgroup of G if and only if $HK = KH$.

(CONTD.....2)

12. a) Prove that the subgroup N of G is a normal subgroup of G if and only if every left coset of N is a right coset of N in G .
(OR)

b) If ϕ is a homomorphism of G into \bar{G} with kernel K , such that K is a normal subgroup of G .

13. a) Prove that every permutation is the product of its cycles.
(OR)

b) Show that if $O(G) = P^n$ where P is a prime number, $Z(G) \neq (e)$.

14. a) What is definition of a ring? Give an example.
(OR)

b) If ϕ is a homomorphism of R into R' with kernel $I(\phi)$, show that (i) $I(\phi)$ is a subgroup of R under addition. (ii) If $a \in I(\phi)$ and $r \in R$ then both ar and ra are in $I(\phi)$.

15. a) Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Show that R is a field.
(OR)

b) State and Prove Fermat theorem.

SECTION - C**(4 X 10 = 40 MARKS)****ANSWER ANY FOUR OUT OF SIX QUESTIONS****(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21) **(K4 (Or) K5)****

16. Prove that every integral domain can be imbedded in a field.

17. If H and K are finite subgroups of G of orders $O(H)$ and $O(K)$ respectively. Show that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$.

18. State and prove Cauchy's theorem for abelian groups.

19. Prove that every group is isomorphic to a subgroup of $A(s)$ for some appropriate S .

20. Prove that a finite integral domain is a field.

21. If R is a commutative ring with unit element and M is an ideal of R , prove that M is a maximal ideal of R if and only if R/M is a field.
