

PART - III

THEORY OF NUMBERS

SECTION - A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS (K1)

1. Use the mathematical induction to find the formula for all $n \geq 1$,
 $1(1!) + 2(2!) + 3(3!) + \dots + n(n!) = ?$
a) $(n+1)!$ b) $n!$ c) $(n-1)!$ d) $(n+1)! - 1$
2. Congruence integer's are _____.
a) Equal b) not necessarily equal c) primes d) zero integers
3. Find the solution of the system of congruence's $7x + 3y \equiv 10 \pmod{16}$ and $2x + 5y \equiv 9 \pmod{16}$
a) 3 & 7 b) 9 & 6 c) 1 & 2 d) 4 & 5
4. $\sigma(180) =$ _____.
a) 546 b) 350 c) 250 d) 35
5. If $(a, p) = 1$ and $x^n \equiv a \pmod{p}$ has a solution then a is called _____.
a) p^{th} power residue modulo p b) n^{th} power residue modulo p
c) p^{th} power residue modulo n d) n^{th} power residue modulo n

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES (K2)

6. If a and b are relatively prime positive integers, then the Diophantine equation $ax-by=c$ has how many solutions in the positive Integers.
7. Write the statement of Fermat's little's theorem.
8. The linear congruence $9x \equiv 21 \pmod{30}$ has how many number of solution?
9. For $N=6$, Find $\sum \sigma(n) = ?$
10. Define primitive .

SECTION – B (5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Prove that the sum of n positive integers is $\frac{n(n+1)}{2}$.
(OR)
b) State and prove fundamental theorem of arithmetic.

12. a) Prove that the product of any n consecutive positive integers is divisible by the product of the first n positive integers.
(OR)
b) If s integers r_1, r_2, \dots, r_s form a reduced residue system modulo m then $s = \phi(m)$.

13. a) State and prove Chinese remainder theorem.
(OR)

b) For arbitrary integer a and b , $a \equiv b \pmod{n}$ iff a and b leave the same nonnegative remainder when divided by n .

14. a) Prove that τ and σ are both multiplicative functions.
(OR)

b) Prove that if f is multiplicative function and F is defined by $F(n) = \sum_{d|n} f(d)$, then F is also multiplicative and $F(8 \cdot 3) = F(8)F(3)$.

15. a) If p is a prime, then prove that there exist $\phi(p-1)$ primitive roots modulo p .
(OR)

b) State and prove Euler's criterion.

SECTION - C (4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS .

**(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21). (K4 (Or) K5)**

16. State and prove Euclid division algorithm.
17. Prove that $a_n = \binom{2n-2}{n-1}/n$
18. Prove that the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$, where p is an odd prime, has a solution iff $p \equiv 1 \pmod{4}$
19. Let $n > 0$ be fixed and a, b, c, d be arbitrary integer, Then prove that the following
 - (i) $a \equiv a \pmod{n}$
 - (ii) If $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$
 - (iii) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$
 - (iv) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a+c \equiv b+d \pmod{n}$ and $ac \equiv bd \pmod{n}$
 - (v) If $a \equiv b \pmod{n}$ then $a+c \equiv b+c \pmod{n}$ and $ac \equiv bc \pmod{n}$
20. State and prove Mobius inversion theorem.
21. State and prove Tchebyshev's Theorem.
