

**N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI****END-OF-SEMESTER EXAMINATIONS : DECEMBER – 2022****B.Sc. – CHEMISTRY****MAXIMUM MARKS: 70****V SEMESTER****TIME : 3 HOURS****PART - III****CO-ORDINATION & BIOINORGANIC CHEMISTRY****SECTION – A (10 X 1 = 10 MARKS)****ANSWER THE FOLLOWING QUESTIONS.****(K1)**

1. Which one of the following will exhibit optical isomerism?  
 a)  $[\text{Ma}_5\text{b}]$       b)  $[\text{M}(\text{AA})_3]$       c)  $[\text{Ma}_6]$       d)  $[\text{Mabcd}]$
2. State the number of primary valency in  $[\text{CoNO}_2(\text{NH}_3)_2\text{Cl}]\text{Br}$ ?  
 a) 3      b) 2      c) 1      d) 4
3. For a high spin  $\text{d}^4$  octahedral complex the crystal field splitting energy will be.....  
 a)  $-1.6 \Delta_0$       b)  $-0.8 \Delta_0$       c)  $-0.6 \Delta_0$       d)  $-1.2 \Delta_0$
4. Which of the following compounds is expected to be colored?  
 a)  $\text{Ag}_2\text{SO}_4$       b)  $\text{CuF}_2$       c)  $\text{MgF}_2$       d)  $\text{CuCl}$
5. The ligand system present in vitamin  $\text{B}_{12}$  is .....  
 a) porphyrin      b) phthalocyanine      c) corrin      d) crown ether

**ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. (K2)**

6. Define ambidentate ligand.
7. Write any one limitation of VBT.
8. What is CFSE?
9. What are labile complexes?
10. Define metal carbonyls.

**SECTION – B****(5 X 4 = 20 MARKS)****ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.**  
**(K3)**

11. a) Describe the classification of structural isomerism.

(OR)

b) Show the IUPAC name of the following complexes.

|                                                                            |                                                                    |
|----------------------------------------------------------------------------|--------------------------------------------------------------------|
| (i) $\text{NH}_4[\text{Pt Cl}_2(\text{H}_2\text{O})(\text{SCN})\text{en}]$ | (ii) $[\text{CoCl}(\text{NH}_3)_2(\text{H}_2\text{O})_2\text{OH}]$ |
| (iii) $\text{Na}[\text{Pt}(\text{NH}_3)\text{Cl}_3]$                       | (iv) $[\text{Ni}(\text{CN})_4]^{2-}$                               |
| (v) $[\text{Al}(\text{OH})(\text{H}_2\text{O})_5]^{2+}$                    |                                                                    |

12. a) Narrate Werner's theory.

(OR)

b) Calculate the EAN for  $[\text{Ni}(\text{CO})_4]$  and  $[\text{Pt}(\text{NH}_3)_4]^{2+}$ 

13. a) List the limitations of crystal field theory.

(OR)

b) Describe the applications of Ca-EDTA in quantitative analysis.

14. a) List the factors affecting stability of the complexes.

(OR)

b) Give an account of  $\text{S}_{\text{N}}^1$  mechanism in complexes.

15. a) Draw the structure and explain biological role of myoglobin.

(OR)

b) Summarize biological functions and toxicity of iodine.

**SECTION – C** **(4 X 10 = 40 MARKS)****ANSWER ANY FOUR OUT OF SIX QUESTIONS****(16<sup>th</sup> QUESTION IS COMPULSORY AND ANSWER ANY THREE****QUESTIONS.** **(K4 / K5 )**

16. Discuss CFT in octahedral complexes.

17. Explain the classification and uses of chelate ligands.

18. Illustrate hybridization, geometry and magnetic properties of  $[\text{FeF}_6]^{3-}$  and  $\text{K}_4[\text{Fe}(\text{CN})_6]$  by VBT.

19. Discuss John Teller distortion in octahedral complexes.

20. Determine the stability constant by Bjerum's method.

21. Discuss the synthesis, properties, structure and EAN of  $\text{Fe}_2(\text{CO})_9$ .