

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2024 ONLY)**

24PMS209

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS : MAY - 2025

M.Sc.-MATHEMATICS

MAXIMUM MARKS: 75

SEMESTER: IV

TIME : 3 HOURS

PART - III

NUMERICAL ANALYSIS

SECTION - A

(10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

1. $x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$ represents _____.
 a) Secant method b) Bisection method c) Newton's Raphson method d) Muller method
2. If $A = \begin{bmatrix} -5 & 3 \\ 7 & 2 \end{bmatrix}$ then find $\det(A)$?
 a) 21 b) -21 c) 31 d) -31
3. If $g(x)$ is a continuous function on some interval $[a,b]$ and differentiable on (a,b) and if $g(a) = 0$, $g(b) = 0$, then there is _____ c inside (a,b) for which $g'(c) = 0$.
 a) At least one point b) At least two point c) At most one point d) At most two point
4. The local error term for the fourth-order Runge-Kutta method is _____.
 a) $O(h^5)$ b) $O(h^2)$ c) $O(h^3)$ d) $O(h^4)$
5. A one root of the Characteristic equation $\lambda^3 - 8\lambda^2 + 14\lambda - 1 = 0$ is _____.
 a) 7.4443 b) 5.4773 c) 3.2221 d) 0.7458

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES

(K2)

6. If $f(x)$ is a continuous function on some interval $[a,b]$ and $f(a)f(b) < 0$, then show that the equation $f(x) = 0$ has atleast one real root or an odd number of roots in the interval (a,b) .
7. Find the solution of the system of equation $2x+3y=7$; $3x-y=5$.
8. Find the error in the Simpson's rule is of the order.
9. Write the error of one step of the modified Euler's method.
10. What is meant by Characteristic-Value problems?

SECTION - B

(5 X 5 = 25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Show that the real root of $f(x) = 3x + \sin x - e^x$ by using Secant method is 0.3604217.

(OR)

- b) Show that the negative root of $f(x) = x^3 + 2x^2 - x + 5$ by using Newton's method is - 2.92585.

(CONTD 2)

12. a) Find the inverse of $A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix}$

(OR)

$$\left| \begin{array}{cccc} 1 & 4 & -2 & 3 \\ 2 & 2 & 0 & 4 \\ 3 & 0 & -1 & 2 \\ 1 & 2 & 2 & -3 \end{array} \right|$$

b) Find the determinant of

13. a) Compute $f'(x)$ at $x = 4.1$ for the following table

x	0	2	3	5	6
F(x)	1	3	7	21	31

(OR)

b) Apply Simpson's three-eighth rule and Evaluate $I = \int_{0.2}^{1.5} e^{-x^2} dx$.

14. a) Calculate $y(0.6)$ for $\frac{dy}{dx} = -2x - y, y(0) = -1$ using the Runge-kutta-Fehlberg method with $h=0.2$. also compute the error.

(OR)

b) Compute the predicted value for $y(x_0 + 0.1)$ for $\frac{dy}{dx} = f(x, y) = -2x - y, y(0) = -1$.

15. a) Solve $\frac{d^2y}{dx^2} = y; y(1) = 1.1752, y(3) = 10.0179$.

(OR)

b) Solve the Successive approximations to finite-difference equations for

$$x'' = t \left(1 - \frac{t}{5}\right) x, \quad x(1) = 2; x(3) = -1.$$

SECTION – C

(5 X 8 = 40 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.
(K4 (Or) K5)

16. a) Determine a root of $f(x) = x^3 + x^2 - 3x - 3$ starting with $a=1, b=2$ and tolerance of $1E-4$ by interval halving.

(OR)

b) Determine a root of $f(x) = 3x + \sin x - e^x$ by using Muller's method.

17. a) Solve the system of equation using Gaussian elimination method
 $4x - 3y = -7; 2x + 2y + 3z = -2; 6x + y - 6z = 6.$

(OR)

b) Solve the system of equation using Iterative method

$$6x - 2y + z = 11; x + 2y - 5z = -1; -2x + 7y + 2z = 5.$$

(CONTD 3)

18. a) Estimate the second derivative at $x=1.3$ using one, two and three terms of derivative. Also estimate the errors of each for the following

X	1.10	1.30	1.50	1.70	1.90	2.10	2.30
f	3.24075	2.96479	2.65999	2.33333	1.99221	1.64421	1.29688

(OR)

b) Evaluate $I = \int_{0.2}^{1.5} e^{-x^2} dx$ using the Romberg integration formula.

19. a) Solve $\frac{dx}{dt} = f(t, x, y) = xy + t, x(0) = 1, \frac{dy}{dt} = g(t, x, y) = ty + x, y(0) = -1$ using Runge-kutta-Fehlberg.

(OR)

b) Solve $\frac{dx}{dt} = xy + t, x(0) = 1, \frac{dy}{dt} = ty + x, y(0) = -1$ using Taylor-series method.

20. a) Solve a second-order equation by the shooting method:

$$x'' = t \left(1 - \frac{t}{5}\right) x, \quad x(1) = 2; \quad x(3) = -1.$$

(OR)

b) Solve the equation $y'' + y = 3x^2$ with boundary points $(0, 0)$ and $(2, 3.5)$. Use polynomial trial functions up to degree 3.
