

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2024 ONLY)**

24PMS205

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS : MAY-2025

M.Sc.-MATHEMATICS

MAXIMUM MARKS: 75

SEMESTER: I

TIME : 3 HOURS

**PART - III
LINEAR ALGEBRA
SECTION - A**

(10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

1. The characteristic polynomial of $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}$ is _____.

(a) $(x-1)(x-2)^2$ (b) $(x-1)^2(x-2)$ (c) $(x-3)(x-1)^2$ (d) $x(x-3)(x-2)$
2. N is a nilpotent operator if _____.

(a) There exist a positive integer r such that $N^{r-1} = 0$.
 (b) There exist a positive integer r such that $rN = 0$.
 (c) There exist a positive integer r such that $N^r = 0$.
 (d) For every positive integer r such that $N^r = 0$.
3. The space $Z(\alpha; T)$ is one-dimensional if and only if _____.

(a) $\alpha = 0$ (b) α is a characteristic vector for T (c) α is not a characteristic vector for T (d) $\alpha =$
4. How many possible Jordan forms are there for a 6×6 complex matrix with characteristic polynomial $(x+2)^4(x-1)^2$. _____.

(a) 2 (b) 5 (c) 7 (d) 10
5. Let f be a bilinear form on the vector space V . f is symmetric if _____ for all α, β in V .

(a) $f(\alpha+\beta) = f(\beta+\alpha)$ (b) $f(\alpha, \beta) = f(\beta, \alpha)$ (c) $f(\alpha\beta) = f(\beta\alpha)$ (d) $f(\alpha, \beta) = -f(\beta, \alpha)$

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES.

(K2)

6. Define minimal polynomial for the linear operator T on a finite dimensional vector space V (F).
7. Let W_1, \dots, W_k be subspaces of the vector space V . When we say W_1, W_2, \dots, W_k are independent?
8. If T is a nilpotent linear on a vector space of dimension n , then write the characteristic equation for T .
9. When we say a matrix is in normal form?
10. Define: Symmetric bilinear form.

(CONTD.....2)

SECTION – B (5 X 5 = 25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Let $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$. Find a matrix P such $P^{-1}AP = D$, where D is the diagonal matrix.

(OR)

b) Let W be an invariant subspace for T. Prove that the characteristic polynomial for the restriction operator T_w divides the characteristic polynomial for T and the minimal polynomial for T_w divides the minimal polynomial for T.

12.a) Let V be a finite dimensional vector space. Let W_1, \dots, W_k be subspaces of V and let $W = W_1 + \dots + W_k$. Show that the following are equivalent.

- (i) W_1, \dots, W_k are independent.
- (ii) **Error! Digit expected.**

(OR)

b) Prove that if E is the projection on R along N, then $(I-E)$ is the projection on N along R.

13.a) Let U be a linear operator on the finite-dimensional space W. Then prove that U has a cyclic vector if and only if there is some ordered basis for W in which U is represented by the companion matrix of the minimal polynomial for U.

(OR)

b) Prove that if T is a linear operator on a finite-dimensional vector space, then every T-admissible subspace has a complementary subspace which is also invariant under T.

14.a) Let A be the complex 3×3 matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ a & 2 & 0 \\ b & c & -1 \end{bmatrix}$. Find a, b, c if A is similar to a diagonal matrix.

(OR)

b) Let A be an $n \times n$ matrix with entries in the field F, and let p_1, \dots, p_r be the invariant factors for A. Show that the matrix $xI-A$ is equivalent to the $n \times n$ diagonal matrix with diagonal entries $p_1, \dots, p_r, 1, 1, \dots, 1$.

15.a) Let V be a finite-dimensional vector space over the field F. Prove that for each ordered basis \mathcal{B} of V, the function which associates with each bilinear form on V its matrix in the ordered basis \mathcal{B} is an isomorphism of the space $L(V, V, F)$ onto the space of $n \times n$ matrices over the field F.

(OR)

b) Let V be a finite-dimensional vector space over a field of characteristic zero, and let f be a symmetric bilinear form on V. Then prove that there is an ordered basis for V in which f is represented by a diagonal matrix.

SECTION – C (5 X 8 = 40 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.
(K4 (Or) K5)

16. a) Let T be a linear operator on a finite dimensional space V and let c be a scalar. Show that the following statements are equivalent.

- (i) c is a characteristic value of T.
- (ii) The operator $(T-cI)$ is singular.
- (iii) $\det(T-cI) = 0$.

(OR)

b) State and prove Cayley-Hamilton theorem.

(CONTD.....3)

17.a) Let T be a linear operator on a finite-dimensional space V . If T is diagonalizable and if c_1, \dots, c_k are the distinct characteristic values of T , then show that there exist linear operators E_1, \dots, E_k on V such that (i) $T = c_1E_1 + \dots + c_kE_k$;

(ii) $I = E_1 + \dots + E_k$;

(iii) $E_iE_j = 0$, $i \neq j$;

(iv) $E_i^2 = E_i$

(v) The range of E_i is the characteristic space for T associated with c_i .

(OR)

b) State and prove primary decomposition theorem.

18. a) Let α be any non-zero vector in V and let p_α be the T -annihilator of α . Then prove that the following:

(i) The degree of p_α is equal to the dimension of the cyclic subspace $Z(\alpha; T)$.

(ii) If the degree of p_α is k , then the vectors $\alpha, T\alpha, T^2\alpha, \dots, T^{k-1}\alpha$ form a basis for $Z(\alpha; T)$

(iii) If U is the linear operator on $Z(\alpha; T)$ induced by T , then the minimal polynomial for U is p_α .

(OR)

b) If T is a linear transformation on $M_2(\mathbb{R})$ such that $T(A) = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}A$.

Find the matrix representation of T with respect to the standard basis of

$M_2(\mathbb{R})$, minimal polynomial and the rational form of the matrix $A = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$.

19.a) If A is a complex 5×5 matrix with characteristic polynomial $f = (x-2)^3(x+7)^2$ and minimal polynomial $p = (x-2)^2(x+7)$, what is the Jordan form for A ?

(OR)

b) Let P be an $m \times m$ matrix with entries in the polynomial algebra $F[x]$. Prove that the following statements are equivalent:

(i) P is invertible.

(ii) The determinant of P is a non-zero scalar polynomial.

(iii) P is row-equivalent to the $m \times m$ identity matrix.

(iv) P is a product of elementary matrices.

20.a) Let f be a bilinear form on the finite-dimensional vector space V . Let L_f and R_f be linear transformations from V into V^* defined by $(L_f\alpha)(\beta) = f(\alpha, \beta) = (R_f\beta)(\alpha)$. Then show that $\text{rank}(L_f) = \text{rank}(R_f)$.

(OR)

b) Let V be an n -dimensional vector space over the field of real numbers, and let f be a symmetric bilinear form on V which has rank r . Then prove that there is an ordered basis $\{\beta_1, \beta_2, \dots, \beta_n\}$ for V in which the matrix of f is diagonal and such that $f(\beta_j, \beta_j) = \pm 1$, $j = 1, \dots, r$. Furthermore, prove that the number of basis vectors β_j for which $f(\beta_j, \beta_j) = 1$ is independent of the choice of basis.
