

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2023 ONLY)**

23PMS417

REG.NO. :

**N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS : MAY - 2025
M.Sc.-MATHEMATICS
SEMESTER: IV**

**MAXIMUM MARKS: 75
TIME : 3 HOURS**

ALGEBRAIC TOPOLOGY

SECTION – A

(10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

1. If $f \approx \tilde{f}$ and \tilde{f} is a constant map, then f is called _____.
(a) Final point of the path (b) homotopic (c) nulhomotopic (d) path homotopic
2. A group is cyclic of infinite order iff it is isomorphic to the _____ group of integers.
(a) $\frac{\mathbb{Z}}{k}$ (b) multiplicative (c) additive (d) divisible
3. Two spaces that are homotopy equivalent are said to have the _____ type
(a) Deformation retract (b) same homotopy (c) nulhomotopy (d) homotopy inverse
4. A simplex in K is said to be _____ if it is not contained in another larger simplex.
(a) Maximal (b) minimal (c) pure simplicial complex (d) isomorphism
5. _____ is defined for simplicial complexes, which are the & complexes whose simplices are uniquely determined by their vertices
(a) Chain complex (b) barycentric coordinates (c) homology classes (d) simplicial homology

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES.

(K2)

6. Define simply connected.
7. Define evenly covered spaces.
8. Write the statement of Brouwer fixed –point theorem for the disc .
9. What is called is called a triangulable space.?
10. What is called commutative diagram?

SECTION – B

(5 X 5 = 25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Prove that \approx and \approx_p are equivalence relations.

(OR)

- b) Prove that the map $\hat{\alpha}$ is a group isomorphism.

12. a) Prove that the fundamental group of S' is isomorphic to the additive group of integers
(OR)

- b) If $p : E \rightarrow B$ and $p' : E' \rightarrow B'$ are covering map then Prove that $p \times p' : E \times E' \rightarrow B \times B'$ is a covering map.

13. a) Prove that given a non vanishing vector field on B^2 , there exists a point of S' where the vector field points directly inward and a point of S' where its points directly outward
(OR)

- b) Prove that the inclusion $j : S^n \rightarrow S^{n+1} - 0$ induces an isomorphism of fundamental group.

(CONTD.....2)

14.a) Let $X \subset \mathbb{R}^n$ be compact. Prove that a point $x \in X$ is a relative boundary point of X iff there exist arbitrarily small neighborhoods U of x in X such that every continuous function $f : X \setminus U \rightarrow S^{n-1}$ has a continuous extension over X .

(OR)

b) Prove that any triangulation (K, f) of a topological space X defines a regular CW-structure on X such that the n th-skeleton is given by $X(n) = f(|K(n)|)$, $n \geq 0$.

15.a) Prove that the composition $\Delta_n(x) \xrightarrow{\partial_n} \Delta_{n-1}(X) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(X)$ is zero.

(OR)

b) For good pairs (X, A) , prove that the quotient map $q : (X, A) \rightarrow (X/A, A/A)$ induces isomorphisms $q^* : H_n(X, A) \rightarrow H_n(X/A, A/A) \approx \tilde{H}_n(X/A) \quad \forall n$

SECTION – C**(5 X 8 = 40 MARKS)****ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.****(K4 (Or) K5)**

16. a) Prove that operation $*$ has Associativity, inverse, Right and left identities properties
(OR)

b) Prove that

(i) If $h : (X, x_0) \rightarrow (Y, y_0)$ and $k : (Y, y_0) \rightarrow (Z, z_0)$ are continuous then

$(k \circ h)_* = k_* \circ h_*$ if $i : (X, x_0) \rightarrow (X, x_0)$ is the identity map then i_* is the identity homomorphism.

(ii) Prove that In a simply connected space X , any two paths having the same initial and final points are path homotopic .

17. a) Prove that the map $p : R \rightarrow S^1$ given by the equation $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is a covering map
(OR)

b) Let $p : E \rightarrow B$ be a covering map, let $p(e_0) = b_0$ Prove that any path $f : [0,1] \rightarrow B$ beginning at b_0 has a unique lifting to a path \tilde{f} in E beginning at e_0

18. a) State and prove fundamental theorem of algebra

(OR)

b) Let $F : X \rightarrow Y$ be continuous let $f(x_0) = y_0$. If f is a homotopy equivalence then prove that $f^* : \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$ is an isomorphism.

19.a) Let K be a finite simplicial complex and d be a linear metric on $|K|$. Then prove that d is a linear metric on $|sd K| = |K|$ and for any $F' \in sd K$ such that $F' \subset |F|$, where $F \in K$ is a q -simplex, we have the inequality of the diameters: $\text{diam}|F'| \leq q(q+1) \text{diam}|F|$.

(OR)

b) State and prove Sperner's lemma.

20.a) If X is nonempty and path-connected, then $H_0(X) \approx \mathbb{Z}$ Prove that for any space X , $H_0(X)$ is a direct sum of \mathbb{Z} 's, one for each path-component of X .
(OR)

b) If two maps $f, g : X \rightarrow Y$ are homotopic , then prove that they induce the same homomorphism $f^* = g^* : H_n(X) \rightarrow H_n(Y)$