

(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2024ONLY)

24UPS2A2

REG.NO.:

B.Sc.-PHYSICS
SEMESTER: II

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS :MAY-2025

MAXIMUM MARKS: 75
TIME : 3 HOURS

PART - III
ANCILLARY MATHEMATICS FOR PHYSICS - II
SECTION - A

ANSWER THE FOLLOWING QUESTIONS: (10 X 1 =10 MARKS)
MULTIPLE CHOICE QUESTIONS. [K1]

1. The value of $\cos(ix) = \dots$.

- a) $i \cos hx$ b) $\cos hx$ c) $\frac{1}{\cos hx}$ d) none

2. The formula for $L^{-1}\{1\} = \dots$.

- a) s b) $\frac{1}{s}$ c) $-\frac{1}{s}$ d) none

3. $\nabla \times \vec{F} = 0, \vec{F}$ is \dots .

- a) irrotational b) solenoidal c) conservative d) none

4. $\nabla \times \nabla \phi = \dots$.

- a) zero b) one c) infinity d) none

5. A scalar function ϕ satisfying the condition $\nabla^2 \phi = 0$ is called the \dots function.

- a) scalar b) vector c) harmonic d) none

ANSWER THE FOLLOWING IN ONE OR TWO SENTENCES. [K2]

6. Write the formula for $L\{\cosh at\}$.

7. Formula for $L^{-1}\{e^{-at}\}$.

8. Define Solenoidal.

9. Define surface integral.

10. State Stoke's theorem.

SECTION -B (5 X 5 = 25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. K3

11. a) If $\tan y = \tan \alpha \tan h \beta$, $\tan z = \cot \alpha \tan h \beta$, prove that $\tan(y + z) = \sin h 2\beta \operatorname{cosec} 2\alpha$.
(OR)

b) Find the Laplace transform of $L\{\sin^2 3t\}$.

12. a) Find the Laplace inverse of $\left\{ \frac{10}{(s+2)^6} \right\}$.
(OR)

b) Find $L^{-1} \left\{ \frac{1}{s(s^2 + a^2)} \right\}$.
(CONTD.....2)

13. a) If $\phi(x, y, z) = x^2 y + y^2 x + z^2$ find $\nabla \phi$ at the point (1, 1, 1).

(OR)

b) Find the directional derivative of $xyz - xy^2 z^3$ at the point (1, 2, -1) in the direction of the vector $\hat{i} - \hat{j} - 3\hat{k}$.

14. a) If $\vec{F} = (3x^2 + 6y)\vec{i} - 14yz\vec{j} + 20xz^2\vec{k}$ evaluate $\int \vec{F} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the following path $x = t$, $y = t^2$, $z = t^3$.

(OR)

b) If $\vec{F} = 3xy\vec{i} - y^2\vec{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve on the xy plane $y = 2x^2$ from (0, 0) to (1, 2).

15. a) Using divergence theorem, evaluate $\int_S \vec{F} \cdot \vec{n} dS$ where $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ and S is the surface of the cube bounded by the planes $x = 0$, $x = 2$, $y = 0$, $y = 2$, $z = 0$, $z = 2$.

(OR)

b) Evaluate $\int_S [ax\vec{i} + by\vec{j} + cz\vec{k}] \cdot \vec{n} dS$ where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$.

SECTION -C

(5X8 = 40 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.

16. a) If $\tan(\alpha + i\beta) = i$, α and β being real, prove that α is indeterminate and β is infinite. [K4]

(OR)

b) Find the Laplace transform of $L\{\sin^3 2t\}$.

17. a) Find $L^{-1} \left\{ \frac{s^2 + 9s + 2}{(s-1)^2(s+2)} \right\}$. [K5]

(OR)

b) Find $L^{-1} \left\{ \frac{7s^3 - 2s^2 - 3s + 6}{s^3(s-2)} \right\}$.

18. a) Show that $\vec{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is irrotational and solenoidal. [K4]

(OR)

b) If $\vec{v} = \vec{w} \times \vec{r}$ prove that $\vec{w} = \frac{1}{2} \operatorname{curl} \vec{v}$ when \vec{w} is a constant vector and \vec{r} is the position vector of a point.

19. a) Show that $\vec{F} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$ is a conservative vector field and find a function ϕ such that $\vec{F} = \nabla \phi$. Also find the work done in moving an object in this field from (1, -2, 1) to (3, 1, 4). [K5]

(OR)

b) Evaluate $\iint_S \vec{F} \cdot \vec{n} dS$ where $\vec{F} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ and S is the part of the surface of the sphere $x^2 + y^2 + z^2 = 1$ which lies in the first octant.

20. a) Verify Stoke's theorem for $\vec{F} = x^2\vec{i} + xy\vec{j}$ taken round the square in the xy plane whose sides are $x = 0$, $x = a$, $y = 0$, $y = a$. [K4]

(OR)

b) Verify Green's theorem in the plane for $\oint_C (xy + y^2) dx + x^2 dy$ where C is the chord curve of the region bounded by $y = x$ and $y = x^2$.