

DURING THE ACADEMIC YEAR 2022 ONLY)

REG.NO.: **N.G.M. COLLEGE (AUTONOMOUS): POLLACHI****END-OF-SEMESTER EXAMINATIONS: MAY-2025****B.Sc.- MATHEMATICS****MAXIMUM MARKS: 50****SEMESTER: VI****TIME: 3 HOURS****PART-III
REAL ANALYSIS-II****SECTION – A (10 X 1 = 10 MARKS)****ANSWER THE FOLLOWING QUESTIONS.****MULTIPLE CHOICE QUESTIONS.****(K1)**

- 1) An infinite set has _____ limit points.
 - (a) Infinite
 - (b) 2
 - (c) 1
 - (d) no
- 2) Let f be real on (a, b) . Then f is strictly monotonically increasing on (a, b) if $a < x < y < b$ implies.
 - (a) $f(x) \leq f(y)$
 - (b) $f(x) \geq f(y)$
 - (c) $f(x) < f(y)$
 - (d) $f(x) > f(y)$
- 3) Every differentiable function is _____
 - (a) discontinuous
 - (b) bi-continuous
 - (c) continuous
 - (d) none of these
- 4) $\int_A^B f(x) da(x)$ is called _____
 - (a) Riemann integral
 - (b) complete integral
 - (c) Riemann-Stieltjes integral
 - (d) None of these
- 5) There is a real _____ function on the real line which is nowhere differentiable.
 - (a) Continuous
 - (b) differentiable
 - (c) real
 - (d) bounded

ANSWER THE FOLLOWING IN ONE OR TWO SENTENCES.**(K2)**

- 6) How to find the continuity of a composite functions?
- 7) Find $\lim_{n \rightarrow \infty} \sqrt[n]{n}$
- 8) Define Monotonic .
- 9) Write the formula for total variation.
- 10) If $f_n(x) = n^2 x (1-x^2)^n$, then find $\int_0^1 \left[\lim_{n \rightarrow \infty} f_n(x) \right] dx$.

SECTION – B(5X3=15 MARKS)**ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)**

11. (a) Define Bolzano's statement.

OR

- (b) Let $f: S \rightarrow T$ is a function from S to J . If $x \leq s$ and $y \leq T$, then prove that $x = f^{-1}(y)$ implies $f(x) \leq y$

12. (a) Write the definition of derivatives.

OR

- (c) Define zero derivatives.

13. (a) State mean- value theorem .

OR

(b) State generalized mean value theorem.

14. (a) Define total variation.

OR

(b) Define the Riemann-Stieltjes integral.

15) (a) Define step function.

OR

(b) State Euler's summation formula.

SECTION-C

(5X5=25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K4 & K5)

16) (a) Show that a metric space S is the connected if and only if every two-valued function on S is constant.

OR

(b) If f is increasing on $[a,b]$, then prove that $f(c^+)$ and $f(c^-)$ both exist for each c in (a,b) and we have $f(a) \leq f(a^+)$ and $f(b^-) \leq f(b)$

17) (a) State and prove chain rule theorem.

OR

(b) If f is differentiable at c , then prove that f is continuous at c .

18) (a) State and prove Taylor theorem.

OR

(b) If f is monotonic on $[a, b]$, then prove that the set of discontinuities of f is countable.

19) (a) If f is monotonic on $[a,b]$, then prove that f is bounded variation on $[a,b]$.

OR

(b) If $f \in R(\infty)$ and if $g \in r(\infty)$ on $[a, b]$, then prove that $c_1 f + c_2 g \in R(\infty)$ on $[a, b]$ (for any two constant c_1 and c_2) and we have

$$\int_a^b (c_1 f + c_2 g) d\alpha = c_1 \int_a^b f d\alpha + c_2 \int_a^b g d\alpha$$

20) (a) If $f \in R(\infty)$ on $[a, b]$, then prove that $\alpha \in R(f)$ on $[a, b]$ and we have

$$\int_a^b f(x) d\alpha(x) + \int_a^b \alpha(x) d f(x) = f(b) \alpha(b) - f(a) \alpha(a).$$

OR

(b) Assume that $\alpha \uparrow$ on $[a, b]$, then prove that

- i) P^1 finer than P have $U(p^1, f, \alpha) \leq U(p, f, \alpha)$ and $L(p^1, f, \alpha) \geq L(p, f, \alpha)$.
- ii) For any two partitions P_1 and P_2 , we have $L(P_1, f, \alpha) \leq U(P_2, f, \alpha)$
