

(FOR THE CANDIDATES ADMITTED

22UMS614

DURING THE ACADEMIC YEAR 2022 ONLY)

REG.NO.:

N.G.M. COLLEGE (AUTONOMOUS): POLLACHI

END-OF-SEMESTER EXAMINATIONS: MAY-2025

B.Sc.- MATHEMATICS

MAXIMUM MARKS: 50

SEMESTER: VI

TIME: 3 HOURS

PART-III

LINEAR ALGEBRA

SECTION – A

(10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

(K1)

ANSWER THE FOLLOWING IN ONE OR TWO SENTENCES.

- 6) Define a matrix is row-reduced.
- 7) Define a subspace.
- 8) Define linear transformation.
- 9) Define linear functional.
- 10) What is a hyperspace?

SECTION – B

(5 X 3 = 15 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11) (a) Find the solution of the system of equations $-x_1 + ix_2 = 0, -ix_1 + 3x_2 = 0, x_1 + 2x_2 = 0$.
(OR)
(b) Let e be an elementary row operation and let E be the $m \times m$ elementary matrix $E = e(I)$.
Then, prove that for every $m \times n$ matrix A , $e(A) = EA$.

12) (a) Prove that if A is a $m \times n$ matrix over F and B, C are $n \times p$ matrices over F , then

$$A(dB + C) = d(AB) + AC \text{ for each scalar } d \text{ in } F.$$

(OR)

(b) Let R be a non-zero row-reduced echelon matrix. Then prove that the non-zero row vectors of R form a basis for the row space of R .

13) (a) Let V be a finite-dimensional vector space over the field F and let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be an ordered basis for V . Let W be a vector space over the same field F and let β_1, \dots, β_n be any vector in W . Then prove that there is precisely one linear transformation T from V into W such that $T\alpha_j = \beta_j, j = 1, 2, \dots, n$.

(OR)

(b) Let V and W be vector spaces over the field F and let T be a linear transformation from V into W . If T is invertible, then the inverse function T^{-1} is a linear transformation from W onto V .

14) (a) Let V be a finite-dimensional vector space over the field F , and let $\mathfrak{B} = \{\alpha_1, \dots, \alpha_n\}$ and $\mathfrak{B}' = \{\alpha_1', \dots, \alpha_n'\}$ be ordered bases for V . Suppose T is a linear operator on V . If $P = \{P_1, \dots, P_n\}$ is the $n \times n$ matrix with columns $P_j = [\alpha_j']_{\mathfrak{B}}$, then prove that $[T]_{\mathfrak{B}'} = P^{-1}[T]_{\mathfrak{B}}P$.

(OR)

(b) Find the vectors in the subspace annihilate to the following functionals on R^4 :

$$f_1(x_1, x_2, x_3, x_4) = x_1 + 2x_2 + 2x_3 + x_4,$$

$$f_2(x_1, x_2, x_3, x_4) = 2x_2 + x_4,$$

$$f_3(x_1, x_2, x_3, x_4) = -2x_1 - 4x_3 + 3x_4.$$

15) (a) Let V be a finite-dimensional vector space over the field F . For each vector α in V define $L_\alpha(f) = f(\alpha), f \text{ in } V^*$. Prove that the mapping $\alpha \rightarrow L_\alpha$ is an isomorphism of V onto V^{**} .

(OR)

(b) Let V and W be finite-dimensional vector spaces over the field F . Let \mathfrak{B} be an ordered basis for V with dual basis \mathfrak{B}^* , and let \mathfrak{B}' be an ordered basis for W with dual basis \mathfrak{B}'^* . Let T be a linear transformation from V into W ; let A be the matrix of T relative to $\mathfrak{B}, \mathfrak{B}'$ and let B be the matrix of T^t relative to $\mathfrak{B}'^*, \mathfrak{B}^*$. Then prove that $B_{ij} = A_{ji}$.

SECTION – C

(5 X 5 = 25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K4 (Or) K5)

16) (a) Prove that every $m \times n$ matrix A is row equivalent to a row reduced echelon matrix.

(OR)

(b) Discover whether $A = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$ is invertible, and find A^{-1} .

17) (a) If W_1 and W_2 are finite dimensional subspaces of a vector space V , then prove that $W_1 + W_2$ is infinite dimensional and

$$\dim W_1 + \dim W_2 = \dim(W_1 + W_2) + \dim(W_1 \cap W_2).$$

(OR)

(b) Let F be a subfield of the complex numbers. Then find the basis of $P = \begin{bmatrix} -1 & 4 & 5 \\ 0 & 2 & -3 \\ 0 & 0 & 8 \end{bmatrix}$ and also find the coordinates of each standard basis vectors.

18) a) Let V and W be vector space over the Field F and let T be a linear transformation from V into W . Suppose that V is finite dimensional then prove that $\text{rank}(T) + \text{nullity}(T) = \dim V$.

(OR)

(b) Prove that every n -dimensional vector space over the field F isomorphic to the space F^n .

(CONTD.....3)

(3)

(22UMS614)

19) a) Let V be the space of all polynomial in variable x of degree at most 3 and let D be the differential operator and let $\mathcal{B} = \{f_1, \dots, f_n\}$ be the ordered basis for V defined by $f_i(x) = x^{i-1}$. Let A be the matrix of D w.r.t some basis for V , then find the matrix of A .

(OR)

(b) Let V be a finite-dimensional vector space over the field F , and let W be a subspace of V . Then prove that $\dim W + \dim W^0 = \dim V$.

20) (a) If f is a non-zero linear functional on the vector space V , then prove that the null space of f is a hyperspace in V . Conversely, prove that every hyperspace in V is the null space of a (not unique) non-zero linear functional on V .

(OR)

(b) Let V and W be vector spaces over the field F , and let T be a linear transformation from V into W . The null space of T^t is the annihilator of the range of T . If V and W are finite-dimensional, then prove that

(i) $\text{rank}(T^t) = \text{rank}(T)$

(ii) the range T^t is the annihilator of the null space of T .
