

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2023 ONLY)**

23PMS209

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS : MAY-2024

NUMERICAL ANALYSIS

SECTION – A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MAXIMUM MARKS: 75

SEMESTER: II

TIME : 3 HOURS

SEWESER. II

TIME VS. HOURS

SECTION – B (5 X 5 = 25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11.a) Find the complex root of the function $f(x) = x^3 + 2x^2 - x + 5 = 0$ with $x_0 = 1 + i$ by the Newton's method.

(QR)

b) Explain the concepts of Newton's method with multiple roots.

12.a) Using LU method, solve the matrix $A = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 2 & 3 \\ 2 & -2 & -1 \end{bmatrix}$. (OR)

(OR)

(CONTD.....2)

12. b) Find the value of the determinant by using elementary row transformations to make it upper-triangular:

$$\begin{vmatrix} 1 & 4 & -2 & 3 \\ 2 & 2 & 0 & 4 \\ 3 & 0 & -1 & 2 \\ 1 & 2 & 2 & -3 \end{vmatrix}.$$

13.a) What is the estimated value for derivative if $x = 4.1$ for the function $f(x) = x^2 - x + 1$, for $x=0,2,3,5,6$, using divided difference method.

(OR)

b) Use Romberg integration to find the integral of e^{-x^2} between the limits of $a = 0.2$ and $b = 1.5$.

14. a) Find $y(0.4)$ to the differential equation $\frac{dy}{dx} = -2x - y$, $y(0) = -1$ with $h = 0.1$, by using Adams-Mouton method.

(OR)

b) Using Range-Kutta fourth order method, find $y(0.5)$ for the differential equation

$$\frac{dy}{dx} = -2x - y, \quad y(0) = -1 \text{ with } h = 0.1.$$

15.a) Compare the accuracy of the finite-difference method with the shooting method on the second-order boundary value problem: $u'' = u$, $u(1) = 1.17520$, $u(3) = 10.01787$, whose analytical solution is $u = \sinh(x)$.

(OR)

b) Find the eigen values and eigen vectors of a matrix $A = \begin{bmatrix} 3 & -1 & 0 \\ -2 & 4 & -3 \\ 0 & -1 & 1 \end{bmatrix}$, by using Power method.

SECTION – C (5 X 8 = 40 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.
(K4 (Or) K5)

16. a) Using remainder theorem, solve the cubic polynomial $x^3 + x^2 - 3x - 3 = 0$ by finding the successive errors, start with $x = 2$.

(OR)

b) Find the quadratic factors of the polynomial $x^4 - 1.1x^3 + 2.3x^2 + 0.5x + 3.3 = 0$.

17. a) Solve the system of equations $2x_2 + x_4 = 0$, $2x_1 + 2x_2 + 3x_3 + 2x_4 = -2$,

$$4x_1 - 3x_2 + x_4 = -7, \quad 6x_1 + x_2 - 6x_3 - 5x_4 = 6, \text{ by Gaussian elimination method.}$$

(OR)

b) Solve the linear system of equations

$$8x_1 + x_2 - x_3 = 8, \quad 2x_1 + x_2 + 9x_3 = 12, \quad x_1 - 7x_2 + 2x_3 = -4, \text{ by Gauss seidal method.}$$

18. a) Apply Simpson's $\frac{1}{3}$ rule to evaluate the integral e^{-x^2} over the interval 0.2 to 1.5 using 2, 4, 6, 8, 10 subdivisions until the value converge to five decimal places.

(OR)

b) Apply Simpson's $\frac{3}{8}$ rule to evaluate the integral e^{-x^2} over the interval 0.2 to 1.5 using 3, 6, 9, 12 subdivisions until the value converge to five decimal places.

(CONTD.....3)

19.a) Illustrate to calculate $y(0.2)$, $y(0.4)$ and $y(0.6)$ for $\frac{dy}{dx} = -2x - y$, $y(0) = -1$, by using Runge-Kutta-Fehlberg method with $h = 0.2$. Find the error of $y(0.6)$.

(OR)

b) Find $y(0.5)$ for the differential equation $\frac{dy}{dx} = -2x - y$, $y(0) = -1$, by Milne's method by taking $h = 0.1$.

20.a) Solve $u'' = u$, $u'(1) = 1.17520$, $u'(3) = 10.01787$, with the finite-difference method.

(OR)

b) Consider the homogenous second-order equation with homogenous boundary conditions:

$$\frac{d^2u}{dx^2} + kx^2 = 0, \quad u(0) = 0, \quad u(1) = 0$$
, where k^2 is a parameter. Solve this equation by characteristic values of the parameter.
