

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2020 ONLY)**

20PMS416

REG.NO. :

**N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS : MAY-2024**

OPERATOR THEORY

SECTION – A **(10 X 1 = 10 MARKS)**

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

**MAXIMUM MARKS: 70
TIME : 3 HOURS**

- The total variation of $\phi, V(\phi) := \underline{\quad}$
 - $\inf_{\pi} \sum_{j=1}^n |\phi(t_j) - \phi(t_{j-1})|$
 - $\inf_{\pi} \sum_{j=1}^n |\phi(t_j) + \phi(t_{j-1})|$
 - $\sup_{\pi} \sum_{j=1}^n |\phi(t_j) - \phi(t_{j-1})|$
 - $\sup_{\pi} \sum_{j=1}^n |\phi(t_j) + \phi(t_{j-1})|$
- If $\text{span } S$ is dense in X' , then $\tilde{S} = \underline{\quad}$.
 - 0
 - 1
 - 1
 - ∞
- If A is a linear operator is completely continuous operator, then $x_n \rightarrow x$ weakly $\Rightarrow \underline{\quad}$.
 - $Ax_n \rightarrow x$
 - $A \rightarrow Ax$
 - $Ax_n \rightarrow A$
 - $Ax_n \rightarrow Ax$
- Eigen spectrum is also known as _____
 - Eigen vector
 - Point spectrum
 - Eigen value
 - None of these
- $r_w(A) := \sup\{|\lambda| : \lambda \in w(A)\}$ is called _____ of A .
 - Numerical Radius
 - Numerical Value
 - Numerical Range
 - Numerical Equation

ANSWER THE FOLLOWING IN ONE OR TWO SENTENCES.

(K2)

6. Define: \mathbb{K}^n with $\|\cdot\|_p$
7. Define: Absolutely Continuous
8. When will you say a normed linear space X is reflexive?
9. What is Ideal?.
10. Define: Eigen spectrum

SECTION – B (5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) State the Fundamental Theorem of Lebesgue Integration.
(OR)

b) Prove that a normed liner space is separable if its dual is separable.

12. a) Suppose X is reflexive. Then prove that X is separable iff its dual X' is separable.
(OR)

b) Let $E \subseteq X'$ be such that $\text{span } E$ is dense in X' , x be a bounded sequence in X , and $x \in X$. Then prove that if $f(x_n) \rightarrow f(x)$ for every $f \in E$, then (x_n) converges weakly to x .

13. a) Prove that for every bounded sequence (x_n) in $L^1[a, b]$, the sequence (Kx_n) has a convergent subsequence in $(C[a, b], \|\cdot\|_\infty)$.
(OR)

b) Let X and Y be normed linear spaces and $A: X \rightarrow Y$ be an injective compact operator. Then prove that if $A^{-1}: R(A) \rightarrow X$ is continuous iff $\text{rank } A < \infty$.

14.a) Let X be a normed linear space and $A: X \rightarrow X$ be a linear operator. Then prove that $\sigma_{eig}(A) \subseteq \sigma_{app}(A)$. If the space X is finite dimensional, then prove that $\sigma_{eig}(A) = \sigma_{app}(A)$.

(OR)

b) Suppose X is a Banach Space, $A \in B(X)$ and $\lambda \in K$. Then prove that $\lambda \in \sigma(A)$ iff either $\lambda \in \sigma_{app}(A)$ or $R(A - \lambda I)$ is not dense in X .

15.a) Let X be a Hilbert space and Y be an inner product space. Then prove that every $A \in B(X, Y)$ has the adjoint.

(OR)

b) Let X be a Hilbert space and $A \in B(X)$ be a self adjoint operator. Then prove that $\|A\| = \sup\{|\langle Ax, x \rangle| : x \in X, \|x\| = 1\}$. In particular, $A = 0$ iff $\langle Ax, x \rangle = 0, \forall x \in X$.

SECTION - C

(4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS.

(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS

FROM Qn.No : 17 to 21). (K4 (Or) K5)

16. a) Prove: The map $T: (l^p(n))' \rightarrow l^q(n)$ defined by $T(f) = (f(e_1), \dots, f(e_n))$, $f \in (l^p)'$ is surjective linear isometry, where $e_j \in K_n$ is such that $e_j(i) = \delta_{ij}$ for $i, j = 1, 2, \dots, n$.

(OR)

b) Let $1 \leq p \leq \infty$. For $y \in L^q[a, b]$, let $f_y: L^q[a, b] \rightarrow K$ be defined by $f_y(x) := \int_a^b xy \, d\mu$ $x \in L^q[a, b]$. Then prove that $f_y \in (L^q[a, b])'$ and the map $y \mapsto f_y$ is a linear isometry from $L^q[a, b]$ to $(L^q[a, b])'$.

17. a) State and Prove Schur's Lemma.

(OR)

b) Suppose X is a reflexive space. Then prove that

- If Y is a closed subspace of X , then for every $x \in X$, there exists $y \in Y$ such that $\|x - y\| = \text{dist}(x, Y)$.
- If Y is a proper subspace of X , then there exists $x_0 \in X$ such that $\|x_0\| = 1$ and $\text{dist}(x_0, Y) = 1$.
- For every $f \in X'$, there exists $x \in X$ such that $\|x\| = 1, |f(x)| = \|f\|$.

18. a) Let X and Y be normed linear spaces and $A: X \rightarrow Y$ be a linear operator. Then prove that the following are equivalent:

- A is a compact operator.
- $\text{cl}\{Ax : \|x\| < 1\}$ is compact in Y .
- For every bounded subset E of X , $\text{cl } A(E)$ is compact in Y .
- For every bounded sequence (x_n) in X , the sequence (Ax_n) has a convergent subsequence in Y .

(OR)

b) Let X and Y be normed linear spaces and $X_0 \subseteq N(A)$ be a closed subspace of X . If $A: X \rightarrow Y$ is a compact operator, then prove that $A: X/X_0 \rightarrow Y$ is also a compact operator.

19. a) Let X be a Banach Space, and $A \in B(X)$. If $\|A\| < 1$, then prove that $I - A$ is invertible and $\|(I - A)^{-1}\| \leq \frac{1}{1 - \|A\|}$.

(OR)

b) Let X be a Banach Space, and $A \in B(X)$. Then prove that every boundary point of $\sigma(A)$ is an approximate eigenvalue of A .

20.a) State and prove Closed Range Theorem.

(OR)

b) Let X be a Hilbert space and $A \in B(X)$. Then prove that

- A is normal iff $\|Ax\| = \|A^*x\|$, for every $x \in X$.
- A is unitary iff A is surjective and $\|Ax\| = \|x\|$, for every $x \in X$.
