

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2021 ONLY)**

21UMS614

REG.NO. :

**N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS :MAY-2024**

PART - III

REAL ANALYSIS – II

SECTION - A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS. (K)

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. (K2)

6. Define Local minimum at a point on a subset S of a metric space.
7. Define total variation of the function .
8. Define step function .
9. Define upper and lower Stieltjes sum of the function.
10. State second fundamental theorem of integral calculus.

SECTION – B (5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Assume f has a derivative at each point of an open interval (a, b) , and assume that f is continuous at both end points a and b . If $f(a) = f(b)$ then prove that there is atleast one interior point c at which $f'(c) = 0$.

(OR)

b) State and prove Taylor's formula with remainder.

(CONTD....2)

12.a) If f is monotonic on $[a, b]$, then prove that f is of bounded variation on $[a, b]$.
(OR)

b) Let f be of bounded variation on $[a, b]$. Let V be defined on $[a, b]$ as follows:
 $V(x) = V_f(a, x)$, $a < x \leq b$, $V(a) = 0$. Prove the following

- V is an increasing function on $[a, b]$.
- $V - f$ is an increasing function on $[a, b]$.

13.a) If $f \in R(\alpha)$ and if $g \in R(\alpha)$ on $[a, b]$, prove that $c_1f + c_2g \in R(\alpha)$.
(OR)

b) State and prove Euler's summation formula.

14.a) If P' is finer than P and α is increasing on $[a, b]$, then prove that
 $U(P', f, \alpha) \leq U(P, f, \alpha)$
(OR)

b) If $f \in R(\alpha)$ and if $g \in R(\alpha)$ on $[a, b]$ and α is increasing on $[a, b]$ then prove that the product $f \cdot g \in R(\alpha)$ on $[a, b]$.

15.a) State and prove Second Mean – Value theorem for Riemann – Stieltjes integrals.
(OR)

b) If $f \in R$ and $g \in R$ on $[a, b]$, let $F(x) = \int_a^x f(t)dt$, $G(x) = \int_a^x g(t)dt$ then prove that F and G are continuous functions of bounded variation on $[a, b]$.

SECTION - C **(4 X 10 = 40 MARKS)**

ANSWER ANY FOUR OUT OF SIX QUESTIONS
(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE

QUESTIONS (FROM Qn. No : 17 to 21) (K4 (Or) K5)

16. If f is differentiable at c and if g is differentiable at $f(c)$ then prove that $g \circ f$ is differentiable at c and $(g \circ f)'c = g'[f(c)]f'(c)$.

17. State and prove Intermediate value theorem for derivative.

18. Let f be of bounded variation on $[a, b]$. If $x \in (a, b]$, let $V(x) = V_f(a, x)$ and put $V(a) = 0$. Prove that every point of continuity of f is also a point of continuity of V .

19. If $f \in R(\alpha)$ on $[a, b]$ and if α has a continuous derivative α' on $[a, b]$. Prove that the Riemann integral $\int_a^b f(x)\alpha'(x)dx$ exists and $\int_a^b f(x)d\alpha(x) = \int_a^b f(x)\alpha'(x)dx$.

20. If α is increasing on $[a, b]$. Prove that the following are equivalent:

- $f \in R(\alpha)$ on $[a, b]$.
- f satisfies Riemann's condition with respect to α on $[a, b]$.
- $\underline{I}(f, \alpha) = \overline{I}(f, \alpha)$.

21. If g has a continuous derivative g' on an interval $[c, d]$. Let f be continuous on $g([c, d])$ And define F by the equation $F(x) = \int_{g(c)}^x f(t)dt$ if $x \in g([c, d])$.
Prove that for each x in $[c, d]$ the integral $\int_c^x f[g(t)]g'(t)dt$ exists and
 $\int_{g(c)}^{g(d)} f(x)dx = \int_c^d f[g(t)]g'(t)dt$