

**N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS: MAY-2024
COURSE NAME:BSc.- MATHEMATICS
SEMESTER: VI**

**MAXIMUM MARKS: 70
TIME : 3 HOURS**

PART - III

LINEAR ALGEBRA

SECTION - A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

1. Singular matrix are _____.
(a) non-invertible
(c) Both non-invertible and invertible
(b) invertible
(d) None Of the above

2. Which one of the following is correct?
(a) \mathbb{R} is a vector space over \mathbb{N}
(c) \mathbb{R} is a vector space over \mathbb{Z}
(b) \mathbb{R} is a vector space over \mathbb{C}
(d) \mathbb{R} is a vector space over \mathbb{Q}

3. If A is $\begin{bmatrix} 8 & 5 \\ 7 & 6 \end{bmatrix}$ then the value of $|A^{11} - A^{10}|$ _____.
(a) 0
(b) 1
(c) 120
(d) 121

4. For each linear transformation : $\mathbb{R}^2 \rightarrow \mathbb{R}^2$. Find the matrix representing t relative to the standard basis of \mathbb{R}^2 if t is rotation in \mathbb{R}^2 counter clock wise by 45°
(a) $\begin{bmatrix} \sqrt{2} & 1 \\ 1 & \sqrt{2} \end{bmatrix}$
(b) $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$
(c) $\begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix}$
(d) none of these .

5. Let V be a finite-dimensional vector space over the field \mathbb{F} . Each basis for V^* is _____.
(a) The dual of some basis for V .
(c) The dual of all basis for V .
(b) maximal proper subspace of V .
(d) none of these

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. (K2)

6. Define a Field.
7. Define Vector Space.
8. Define a linear transformation from V into W .
9. Define annihilator.
10. Define transpose of A and give an example.

SECTION – B (5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. K3

11. a) If A , B , C are matrices over the field \mathbb{F} such that the products BC and $A(BC)$ are defined, then so are the products AB , $(AB)C$ and $A(BC) = (AB)C$.
(OR)
(b) If A and B are row-equivalent $m \times n$ matrices, the homogeneous systems of linear equations $AX = 0$ and $BX = 0$ have exactly the same solutions.

(CONTD.....2)

12.(a) Check whether $(1, -2, 5)$ is a linear combination of $(1, 1, 1)$, $(1, 2, 3)$ and $(2, -1, 1)$
(OR)

(b) Determine whether the following set of vectors are Linearly independent or linearly dependent in $V_3(R)$: $(1, 4, -2)$, $(-2, 1, 3)$, $(-4, 11, 5)$

13.a) Let V and W be vector spaces over the field F and let T be a linear transformation from V into W . If T is invertible, then the inverse function T^{-1} is a linear transformation from W onto V .
(OR)

b) Let V be a vector space over the field F ; let U, T_1 and T_2 be linear operators on V ; let c be an element of F . Prove that (i) $UI = U$;
(ii) $U(T_1 + T_2) = UT_1 + UT_2$; $(T_1 + T_2)U = T_1U + T_2$

14.a) Let $T: V_3 \rightarrow V_3$ given by $T(a, b, c) = (3a + c, -2a + b, a + 2b + 4c)$. Find the matrix representation with respect to the standard basis.
(OR)

b) Let V be a finite-dimensional vector space over the field F , and let W be a subspace of V . Then prove that $\dim W + \dim W^0 = \dim V$.

15.a) Let V be a finite-dimensional vector space over the field F . For each vector a in V define $L_a(f) = f(a)$, f in V^* . Prove that the mapping $a \rightarrow L_a$ is then an isomorphism of V onto V^{**} .
(OR)

b) If S is any subset of a finite-dimensional vector space V , then prove that $(S^0)^0$ is the subspace spanned by S .

SECTION - C **(4 X 10 = 40 MARKS)**

ANSWER ANY FOUR OUT OF SIX QUESTIONS.

(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS FROM Qn.No : 17 to 21)

16. Let R^+ be the set of all positive real numbers. Define addition and scalar multiplication as follows $u + v = uv$ for all $u, v \in R^+$; $\alpha u = u^\alpha$ for all $u \in R^+$ and $\alpha \in R^+$. Determine whether or not R^+ is a real vector space.

17. Suppose F is the field of rational numbers, $A = \begin{bmatrix} 2 & -1 & 3 & 2 \\ 1 & 4 & 0 & -1 \\ 2 & 6 & -1 & 5 \end{bmatrix}$ and perform a finite sequence of elementary row operations on A .

18. If W_1 and W_2 are finite-dimensional subspaces of a vector space V , then $W_1 + W_2$ is finite-dimensional and $\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$.

19. State and prove Dimension theorem for linear transformation.

20. Find the matrix representation $T: V_2 \rightarrow V_2$ given by $T(a, b) = (-b, a)$ with respect to the Basis $(1, 2)$, $(1, -1)$.

21. Let V and W be finite-dimensional vector spaces over the field F . Let \mathfrak{B} be an ordered basis for V with dual basis \mathfrak{B}^* , and let \mathfrak{B}' be an ordered basis for W with dual basis \mathfrak{B}'^* . Let T be a linear transformation from V into W ; let A be the matrix of T relative to \mathfrak{B} , \mathfrak{B}' and let B be the matrix of T^t relative to \mathfrak{B}'^* , \mathfrak{B}^* . Then prove that $B_{ij} = A_{ji}$.
