

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2021 ONLY)**
REG.NO. :

21UMS6E1

**N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS :MAY-2024**
COURSE NAME : B.Sc.-MATHEMATICS **MAXIMUM MARKS: 70**
SEMESTER: VI **TIME : 3 HOURS**

PART - III
DISCRETE MATHEMATICS

SECTION - A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS. (K1)

1. The value of F_4 of the Fibonacci numbers using recursion is _____.
(a) 5 (b) 4 (c) 3 (d) 1
2. The value of $p \vee (p \wedge q)$ is _____.
(a) p (b) q (c) $p \wedge q$ (d) $p \vee q$
3. If for every $a, b \in X$, both $a \vee b$ and $a \wedge b$ exists in a Poset (X, \leq) then the Poset is _____.
(a) Boolean Algebra (b) Lattice (c) Modular (d) Equivalence relation
4. A graph in which every vertex has same degree is _____.
(a) Irregular (b) regular (c) multi graph (d) connected graph
5. If $\Sigma = \{0,1,2\}$ and the string $w = 01212$ then the length of w is _____.
(a) 2 (b) 3 (c) 5 (d) 0

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. (K2)

6. Define characteristics equation of the homogeneous equation of order n.
7. Define elementary product.
8. If $D(n)$ denotes the Lattice of all positive divisors of the integer n, draw the Hasse diagram of $D(10)$.
9. Define intersection of two graphs G_1 and G_2 .
10. Define type K- language.

SECTION – B (5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Find the recurrence relation satisfying $y_n = A(3)^n + B(-4)^n$.
(OR)
b) Find $f(n)$ if $f(n) = 7f(n-1) - 10f(n-2)$ given that $f(0) = 4$ and $f(1) = 17$.
12. a) Show that $(P \rightarrow Q) \Rightarrow (\neg Q \rightarrow \neg P)$.
(OR)
b) Obtain a disjunctive normal form of $P \rightarrow ((P \rightarrow Q) \wedge \neg(\neg Q \vee \neg P))$.
13. a) Let (L, \leq) be a lattice. For any $a, b \in L$. If $a \leq b$ then prove that $a \vee b = b$
(OR)
b) In a Boolean algebra L, prove that $(a \wedge b)' = a' \vee b'$ for all $a, b \in L$.

(CONTD.....2)

14.a) Prove that the number of vertices of odd degree in a graph is always even.

(OR)

b) Draw the complete graph K_6 and also find the number of edges in the graph K_{15} .

15.a) Let $\Sigma = \{0,1\}$. Show that the following expressions are regular expressions over $\Sigma = \{0,1\}$

(a) $0^*(0-1)$ (b) $00^*(0+1)^*$ (c) $(01)^*(01+1)^*$.

(OR)

b) Let $V = \{S, A, B\}$, $\Sigma = \{a, b\}$ starting symbol S and production

$P = \{S \rightarrow aABA, A \rightarrow baABB, B \rightarrow Aab, aA \rightarrow baa, bBb \rightarrow abab\}$.

Find the language generated by $G = (V, \{a, b\}, S, P)$.

SECTION - C

(4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS

**(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21)**

(K4 (Or) K5)

16. Let L be a complemented, distributive lattice. For $a, b \in L$,

Prove that the following are equivalent.

- (i) $a \leq b$
- (ii) $a \wedge b' = 0$
- (iii) $a' \wedge b = 1$
- (iv) $b' \leq a'$

17. Using the generating function solve the difference equation $y_{n+2} - y_{n+1} - 6y_n = 0$ given $y_1 = 1, y_0 = 2$.

18. Show that if $p \rightarrow q, q \rightarrow r, \neg(p \wedge r)$ and $p \vee r$, then r .

19. In a distributive lattice, prove that the following are equivalent

- (i) $a \wedge b \leq x \leq a \vee b$
- (ii) $x = (a \wedge x) \vee (b \wedge x) \vee (a \wedge b)$.

20. Prove that a simple graph G with n vertices and k components cannot have more than $\frac{1}{2}(n - k)(n - k + 1)$ edges.

21. Design a finite – state machine that performs serial addition.

ETHICAL PAPER