

N.G.M COLLEGE (AUTONOMOUS): POLLACHI
END-OF -SEMESTER EXAMINATIONS: NOVEMBER 2023

COURSE NAME: B. SC PHYSICS
SEMESTER: I

MAX. MARKS: 75
TIME: 3 HOURS

MATHEMATICS FOR PHYSICS - I
SECTION – A

(10 X 1 =10 MARKS)

ANSWER THE FOLLOWING QUESTIONS:

[K1]

1. All diagonal elements in a skew symmetric matrix is -----.
 - a) one
 - b) infinity
 - c) same
 - d) zero
2. Every polynomial equation of n^{th} degree has ----- roots.
 - a) zero
 - b) one
 - c) n
 - d) infinity
3. 'e' is an ----- number.
 - a) irrational
 - b) rational
 - c) finite
 - d) infinite
4. The aim of Gauss elimination method is to reduce the given matrix to -----.
 - a) diagonal
 - b) identity
 - c) lower triangular
 - d) upper triangular
5. $\Gamma(n+1) =$ -----
 - a) $n!$
 - b) n
 - c) $n\Gamma(n)$
 - d) $n^2\Gamma(n)$

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES

[K2]

6. State Cayley Hamilton theorem.
7. Define reciprocal equation.
8. Expand $\log 2$.
9. Name two methods of solving system of simultaneous linear equations.
10. Define Gamma function.

SECTION – B **(5 X 5 = 25 MARKS)**

ANSWER ALL THE QUESTIONS:

[K3]

11. a) Show that $\begin{bmatrix} 1+i & -1+i \\ 2 & 2 \\ 1+i & 1-i \\ 2 & 2 \end{bmatrix}$ is unitary.

(OR)

b) Find the eigen values of $\begin{pmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$.

12. a) Solve the equation $x^3 - 19x^2 + 114x - 216 = 0$ given that the roots are in G.P.

(OR)

b) Solve $6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$.

13. a) Find the sum to infinity of the series $\frac{4}{2.4} + \frac{4.5}{2.4.6} + \frac{4.5.6}{2.4.6.8} + \dots \infty$.

(OR)

b) Sum to infinity the series $1 + \frac{1+2}{2!} + \frac{1+2+2^2}{3!} + \dots \infty$

14. a) Solve the system by Gauss Elimination method: $2x + 3y - z = 5$, $4x + 4y - 3z = 3$ and $2x - 3y + 2z = 2$.

(OR)

b) Solve the system by Gauss Jordan Elimination method: $x + 2y + z = 3$, $2x + 3y + 3z = 10$ and $3x - y + 2z = 13$.

15. a) Evaluate $\int_0^1 (x \log x)^4 dx$.

(OR)

b) Evaluate $\int_0^\infty e^{-x^2} dx$.

SECTION -C

(5X8 = 40 MARKS)

ANSWER ALL THE QUESTIONS:

16. a) Show that $\begin{bmatrix} 3i & 1+i \\ -1+i & -i \end{bmatrix}$ is a skew Hermitian matrix.

(OR) [K4]

b) Obtain the characteristic roots and the associate characteristic vectors of the matrix

$$\begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}.$$

17. a) Find the equation whose roots are the roots of the equation $x^4 - x^3 - 10x^2 + 4x + 24 = 0$ by increased by 2 and hence solve the equation.

(OR) [K5]

b) Remove the second term from the equation $x^3 - 6x^2 + 11x - 6 = 0$.

18. a) Sum to infinity the series $5 + \frac{2.6}{1!} + \frac{3.7}{2!} + \frac{4.8}{3!} + \dots \infty$.

(OR) [K4]

b) Sum to infinity the series $\frac{2.3}{3} + \frac{3.5}{5} + \frac{4.7}{7} + \dots \infty$.

19. a) Apply Gauss Jordan method to find the solution of the following system: $10x + y + z = 12$, $2x + 10y + z = 13$, $x + y + 5z = 7$.

(OR) [K5]

b) By Gauss Elimination method, find the inverse of $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 3 & -1 & -4 \end{pmatrix}$.

20. a) Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

(OR) [K4]

b) Evaluate $\int_0^\infty \frac{x}{1+x^6} dx$.
