

**(FOR THE CANDIDATES ADMITTED  
DURING THE ACADEMIC YEAR 2023 ONLY)**

**23UMS102**

**REG.NO. :**

**N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI**

**END-OF-SEMESTER EXAMINATIONS : NOVEMBER-2023**

**COURSE NAME: B.SC(MATHEMATICS)**

**MAXIMUM MARKS: 75**

**SEMESTER: I**

**TIME : 3 HOURS**

**PART - III**

**CALCULUS**

**SECTION – A (10 X 1 = 10 MARKS)**

**ANSWER THE FOLLOWING QUESTIONS.**

**(OBJECTIVE QUESTIONS WITH FOUR MULTIPLE CHOICES)**

**(K1)**

1. The reciprocal of the curvature of a curve at any point is called \_\_\_\_\_.  
(a) Center of curvature (b) radius of curvature (c) evolute (d) envelope
2. Elimination of  $a$  and  $b$  from  $z = (x + a)(y + b)$  \_\_\_\_\_.  
(a)  $z = ab$  (b)  $z = a + b$  (c)  $z = p + q$  (d)  $z = pq$
3. The value of  $\int \int \int_{0 \ 0 \ 0}^{a \ a \ a} dx \ dy \ dz$  is \_\_\_\_\_.  
(a)  $a^3$  (b)  $a^2$  (c)  $a$  (d) 1
4.  $L[e^{-at}] =$  \_\_\_\_\_.  
(a)  $\frac{1}{s+a}$  (b)  $\frac{1}{s-a}$  (c)  $s+a$  (d)  $\frac{1}{s}$
5.  $n! =$  \_\_\_\_\_.  
(a)  $\Gamma(1)$  (b)  $\Gamma(n)$  (c)  $n\Gamma(n)$  (d)  $n$

**ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. (K2)**

6. Solve  $(D^2 + 5D + 4)y = 0$  where  $D = \frac{d}{dx}$
7. Equations, in which the variables do not occur explicitly, can be written in the form
8. Write double integral in polar coordinates
9. What is called Jacobian?

10. Find  $\Gamma\left(\frac{1}{2}\right)$

**SECTION – B (5 X 5 = 25 MARKS)**

**ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)**

11. a) Find the envelope of the family of straight lines  $y + tx = 2at + at^3$ , the parameter being  $t$   
(OR)
- b) Solve  $(D^4 + 4)y = x \sin x.$

**(CONTD.....2)**

12. a) Form a partial differential equation by eliminating the arbitrary function  $f$  from

$$f(x^2 + y^2 + z^2, z^2 - 2xy)$$

(OR)

b) Interpret the solution of the equation  $p^2 + q^2 = npq$ .

13. a) Calculate  $\iint xy \, dx \, dy$  taken over the positive quadrant of the circle  $x^2 + y^2 = a^2$ .

(OR)

b) By changing the order of integration, Evaluate  $\iint_{0 \leq x \leq y} \frac{e^{-y}}{y} \, dx \, dy$ .

14. a) Prove that  $\beta(m, n) = \beta(m)\beta(n)$ .

(OR)

14 b) Evaluate  $\iint_R (x - y)^2 e^{x+y} \, dx \, dy$  where  $R$  is the square with vertices  $(1,0), (2,1), (2,1)$  and  $(0,1)$

15.a) Show that  $L\left[\frac{\cos 3t - \cos 2t}{t}\right] = \frac{1}{2} \log\left(\frac{s^2 + 4}{s^2 + 9}\right)$

(OR)

15 b) Prove that  $\int_0^\infty \frac{e^{-t} - e^{-2t}}{t} \, dt = \log 2$

### SECTION – C

(5 X 8 = 40 MARKS)

**ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.**

(K4 (Or) K5)

16. a) Prove that the radius of curvature at any point of the cycloid  $x = a(\theta + \sin \theta)$  and

$$y = a(1 - \cos \theta) \text{ is } 4a \cos \frac{\theta}{2}$$

(OR)

b) Solve  $(D^3 + 1)y = x^2 e^{2x} + x \cos x$ .

17.a) Solve the equation  $px(y^2 + z) - qy(x^2 + z) = z(x^2 - y^2)$  Also find the surface that contains the straight line  $x + y = 0, z = 1$

(OR)

b) Solve  $(y + z)p + (z + x)q = x + y$ .

18.a) Justify  $\iiint xyz \, dx \, dy \, dz$  taken through the positive octant of the sphere  $x^2 + y^2 + z^2 = a^2$ , by transforming into spherical co-ordinates.

(OR)

b) Find the centroid of a loop of the lemniscates  $r^2 = a^2 \cos 2\theta$

(CONTD.....3)

19.a) Prove that  $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$

**(OR)**

b) Use the substitution  $x + y + z = u, y + z = uv, z = uvw$  to evaluate the integral

$$\int \int \int [xyz(1-x-y-z)]^{1/2} dx dy dz \quad \text{taken over the tetrahedral volume enclosed by the planes}$$

$x = 0, y = 0, z = 0$  and  $x + y + z = 1$

20.a) Using Laplace transform, Solve  $\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} - 3y = \sin t$ , given that  $y = \frac{dy}{dt} = 0$  where  $t=0$

**(OR)**

b) Show that the solution of the differential equation  $\frac{d^2 y}{dx^2} = 4y = A \sin At$  which is such that

$$y = 0 \text{ and } \frac{dy}{dt} = 0 \text{ when } t = 0 \text{ is } y = A \frac{\sin At - \frac{k}{2} \sin 2t}{4 - k^2} \text{ if } k \neq 2.$$

If  $k = 2$  show that

$$y = \frac{A(\sin 2t - 2t \sin 2t)}{6}$$

\*\*\*\*\*

**ETHICAL PAPER**