

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2021 ONLY)**

21UMS512

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS : NOVEMBER-2023

COURSE NAME: B.Sc.-MATHEMATICS

MAXIMUM MARKS: 70

SEMESTER: V

TIME : 3 HOURS

PART - III

THEORY OF NUMBERS

SECTION - A

(10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

1. What is the formula to compute the sum of the first n positive integers?

a) $\frac{(n-1)}{2}$ b) $\frac{n(n+1)}{2}$ c) $\frac{n(n-1)}{2}$ d) $\frac{n}{2}$

2. If h and j are two integers and $h \equiv j \pmod{m}$, then how j is called with respect to h modulo m ?

a) congruence b) complete residue system c) perfect square d) residue

3. Which of the following conditions is the necessary and sufficient condition for the congruence

$(m-1)! \equiv -1 \pmod{m}$ to hold?

a) m is a prime b) m is composite c) m is zero d) m is odd prime

4. What is the condition for a function $f(mn) = f(m)f(n)$ to be multiplicative?

a) $m|n$ b) $\gcd(m, n) = 1$ c) $n|m$ d) $\text{lcm}(m, n) = 1$

5. What is the value of $\lim_{x \rightarrow \infty} \frac{\pi(x)}{x}$?

a) 0 b) 1 c) $-\infty$ d) $+\infty$

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES.

(K2)

6. Explain the conditions for an integer d to be the greatest common divisor of another integer a .

7. Define Euler function with an example.

8. Provide a suitable illustration to the statement “ If $\gcd(a, c) = 1$, then a has an inverse and it is unique modulo c ”.

9. Define the Möbius function with an Example.

10. Define primitive root modulo m with an example.

SECTION – B

(5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Sketch the binary notations for 47, 68 and 127

(OR)

b) If a , b and c are integers where a and c are relatively prime and if $c | ab$ then show that $c | b$

(CONTD.....2)

12.a) If ${}_n P_r$ denotes the number of r-permutations of a set of n objects, then show that

$${}_n P_r = n(n-1) \dots (n-r+1)$$

(OR)

b) If s different integers r_1, r_2, \dots, r_s form a complete residue system modulo m, then show that $s = m$.

13.a) State and prove Fermat's little theorem

(OR)

b) Find the least positive integer x such that the congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$ and $x \equiv 2 \pmod{7}$ holds.

14.a) Compute the values of $\varphi(19)$, $\varphi(49)$, $\varphi(243)$ and $\varphi(1024)$

(OR)

b) Show that

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1 \end{cases}$$

15.a) Show that there are no primitive roots modulo 8

(OR)

b) If $[x]$ denotes the largest integer that does not exceed x, then show that

$$0 \leq [2x] - 2[x] \leq 1$$

SECTION - C

(4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS

**(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21)**

(K4 (Or) K5)

16. Construct the general formulae for $d(n)$ and $\sigma(n)$

17. State and prove the basis representation theorem

18. Prove that $a_n = \binom{2n-2}{n-1} / n$.

19. (i) State the Chinese Remainder Theorem.

(ii) Evaluate the congruence $3x \equiv 11 \pmod{2275}$ using the Chinese Remainder Theorem.

20. Derive the Mobius Inversion Formula

21. Prove that for each prime p, there exist primitive roots modulo p.
