

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2021 ONLY)**

21UMS510

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS : NOVEMBER-2023

COURSE NAME: B.Sc.- MATHEMATICS

MAXIMUM MARKS: 70

SEMESTER: V

TIME : 3 HOURS

PART - III

REAL ANALYSIS-I

SECTION - A

(10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

(K1)

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES

(K2)

6. What is interval?
7. What does the new relation \mathcal{S} mean?
8. Write the formula of norm.
9. Write the triangle inequality.
10. Define continuous function.

SECTION – B

(5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING

or a pri
(OR)

b) If $a \geq 0$, then prove that we have the inequality $|x| \leq a$ if, and only if $-a \leq x \leq a$.

12.a) Define composite functions and similar sets.
(OR)

b) i) Prove that the set Q of all rational numbers is a countable set.
ii) Prove that the set S of intervals with rational end points is a countable set.

13.a) Prove that the union of any collection of open sets is an open set.

(OR)

b) Prove that the set S in R^n is closed if, and only if, it contains all its adherent points.

14.a) If X is a closed subset of a compact metric space M , then prove that X is compact.

(OR)

b) Prove that sequence $\{x_n\}$ in a metric space (S, d) can converge to at most one point in S .

15.a) Prove that a metric space S is connected if, and only if, every two-valued function on S is constant.

(OR)

b) If f is a strictly increasing on a set S in R , then prove that f^{-1} exists and is strictly increasing on $f(S)$.

SECTION - C

(4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS

**(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21)**

(K4 (Or) K5)

16. State and prove representation theorem for open sets on the real line..

17. If n is a positive integer which is not a perfect square, then Prove that \sqrt{n} is irrational..

18. Prove that every subset of a countable set is countable.

19. State and prove Heine-Borel theorem.

20. Prove that In Euclidean space R^k every Cauchy sequence is convergent.

21. State and prove Heine theorem.

ETHICAL PAPER