

(NO. OF PAGES: 2)

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2021 ONLY)**

21UMS509

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS : NOVEMBER-2023

COURSE NAME: B. Sc.- MATHEMATICS

MAXIMUM MARKS: 70

SEMESTER: V

TIME : 3 HOURS

PART - III

MODERN ALGEBRA

SECTION A

ANSWER THE FOLLOWING QUESTIONS

(10 X 1 = 10 MARKS)

**ANSWER THE FOLLOWING QUESTIONS.
MULTIPLE CHOICE QUESTIONS.**

(K1)

1. Two sets are said to be disjoint if their _____ is empty.
a) union b) intersection c) complement d) null set
2. $\phi(x) = \bar{e}$, \bar{e} is _____ element of \bar{G} .
a) product b) nilpotent c) kernel d) identity
3. Every permutation can be uniquely expressed as a product of disjoint _____.
a) paths b) lines c) cycles d) sum
4. A ring with this latter property is called a _____.
a) field b) elements c) divisor d) finite
5. In the Euclidean ring R , a and b in R are said to be relatively prime if their _____ common divisor is a unit of R .
a) lowest b) upper c) greatest d) bounded

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES.

(K2)

6. Define abelian group.
7. Write the equation of normal subgroup.
8. What is normalizer?
9. Define Homomorphisms.
10. Write two points of greatest common divisor.

SECTION – B

(5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) If $\sigma : S \rightarrow T$, $\tau : T \rightarrow U$ and $\mu : U \rightarrow V$, then $(\sigma \circ \tau) \circ \mu = \sigma \circ (\tau \circ \mu)$.

(OR)

b) If H is a non empty finite subset of a group G and H is closed under multiplication, then H is a subgroup of G .

(CONT'D....2)

12.a) Prove that N is a normal subgroup of G if and only if $gNg^{-1} = N$ for every $g \in G$.

(OR)

b) Let ϕ be a homomorphism of G onto \overline{G} with kernel K , and let \overline{N} be a normal subgroup of \overline{G} ,

$N = \{x \in G / \phi(x) \in \overline{N}\}$. Then $G/N \cong \overline{G}/\overline{N}$ equivalently, $G/N \approx (G/K)/(N/K)$.

13.a) Every permutation is the product of its cycles.

(OR)

b) $N(a)$ is a subgroup of G .

14.a) If R is a ring, then $\forall a, b \in R$ prove that 1. $A0=0a=0$ 2. $a(-b) = (-a)b = -(ab)$.

(OR)

b) Prove that a finite integral domain is a field.

15.a) Prove that Euclidean ring possesses a unit element.

(OR)

b) If p is a prime number of the form $4n+1$, then prove that $p=a^2+b^2$ for some integers a, b .

SECTION - C

(4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS

**(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21) (K4 (Or) K5)**

16. If p is prime number and $p/o(G)$, then prove that G has an element of order p .

17. If H and K are finite subgroups of G of orders $o(H)$ and $o(K)$ respectively, then prove that

$$o(HK) = \frac{o(H)o(K)}{o(H \cap K)}.$$

18. If ϕ is a homomorphism of G onto \overline{G} with kernel K , then prove that $G/K \approx \overline{G}$.

19. Prove that every group is isomorphic to a subgroup of $A(S)$ for some appropriate S . Define automorphism and conjugate.

20. Prove that finite integral domain is a field.

21. Prove that $J[i]$ is a Euclidean ring.
