

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2020 ONLY)**

20PMS417

REG.NO.:

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS : JULY-2022

M. Sc.-MATHEMATICS

MAXIMUM MARKS: 70

SEMESTER : IV

TIME : 3 HOURS

CONTROL THEORY

SECTION - A **(10 X 1 = 10 MARKS)**

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

1. The system $\dot{x} = A(t)x$, $y(t) = H(t)x(t)$ is _____ on an interval $t \in [0, T]$ if $y(t) = H(t)x(t) = 0$ implies $x(t) = 0$, $t \in [0, T]$.
a) linearly independent b) linearly dependent c) observable d) singular
2. The system described by $\dot{x}_1 = -x_1 + u_1$, $\dot{x}_2 = 2x_2 + u_1 + u_2$ is _____.
a) observable b) controllable c) nonsingular d) singular
3. The system $\dot{x} = Ax$ is asymptotically stable if all the eigenvalues of A have _____.
a) positive real parts b) negative real parts c) positive values d) negative values
4. The system $\dot{x} = (A + BK)x$ is called a/an _____.
a) an open loop system b) a closed loop system c) positive definite d) stable
5. The optimal control must _____ the Hamiltonian.
a) minimize b) maximize
c) both maximize and minimize d) neither maximize nor minimize

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES.

K2

6. Define a reconstruction Kernel.
7. Define completely controllable system.
8. Define uniformly stable solution
9. Define stabilizability.
10. Write down the linear time invariant system.

SECTION – B

(5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.

11. a) Prove that there exists a reconstruction kernel $R(t)$ on $[0, T]$ if and only if $\dot{x} = A(t)x$, $y(t) = H(t)x(t)$ is observable on $[0, T]$
(OR)

b) Check the observability of the following system $t^2\ddot{x} + t\dot{x} - x = 0$ with observation $y = \dot{x}$

12.a) Prove that the system $\dot{x} = A(t)x + B(t)u$ is controllable on $[0, T]$ if for each vector $x \in \mathfrak{R}^n$ there is a control $u \in L_m^2 [0, T]$ which steers 0 to x , during $[0, T]$
(OR)

b) Show that the following system is completely controllable on $[0, T]$:

$$\dot{x}_1 = -x_1 + x_2 + (\cos t)u_1 + (\sin t)u_2 + \frac{10x_1}{1+x_1^2+x_2^2+u_1^2}$$
 (CONTD.....2)

13. a) Prove that the system $\dot{x} = Ax$ is asymptotically stable iff every eigen value of A has negative real part.

(OR)

b) Show that the following system is stable: $\dot{x} = Ax$, where $A = \begin{bmatrix} -1 & 0 & 0 \\ -2 & -1 & 2 \\ -3 & -2 & -1 \end{bmatrix}$

14.a) Prove that if the system $\dot{x} = Ax + Bu$, $x \in \mathbb{R}^m$, $u \in \mathbb{R}^n$ is controllable, then it is stabilizable.

(OR)

b) Suppose there are $m \times n$ matrices K_1, K_2 such that $(A + BK_1)$ and $-(A + BK_2)$ are stability matrices. Prove that the system $\dot{x} = Ax + Bu$, $x \in \mathbb{R}^m$, $u \in \mathbb{R}^n$ is controllable.

15. a) Prove that if $K(t)$ is the solution of the Riccati equation

$\dot{K}(t) + K(t)A(t) + A^*(t)K(t) - K(t)S(t)K(t) + Q(t) = 0$ and if $K(t) = F$, then $K(t)$ is symmetric for all $t \in [0, T]$.

(OR)

b) Find the optimal control u for the system $\dot{x}(t) = x(t) + u$, $x(0) = x_0$ and the cost functional $J = \int_0^1 (3x^2(t) + u^2(t)) dt$.

SECTION - C

(4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS.

(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS (FROM Qn. No : 17 to 21) (K4 (Or) K5)

16. Prove that the constant coefficient system $\dot{x} = Ax$, $y = Hx$ is observable on an arbitrary interval $[0, T]$ if and only if for some k , $0 < k \leq n$, the

$$\text{rank} \begin{bmatrix} H \\ HA \\ \cdot \\ \cdot \\ \cdot \\ HA^{k-1} \end{bmatrix} = n$$

17. Prove that the observed linear system $\dot{x} = A(t)x$, $y(t) = H(t)x(t)$ is observable on $[0, T]$ if and only if the observability Grammian matrix is positive definite

18. Prove that the constant coefficient control system $\dot{x} = Ax + Bu$ is controllable if and only if $\text{rank}[B, AB, \dots, A^{n-1}B] = n$.

19. Let $X(t)$ be a fundamental matrix of the system $\dot{x} = A(t)x(t)$, where $A(t)$ is a $n \times n$ matrix on J .
 Prove the following: The system is stable iff there exists a constant $k > 0$ with $\|x(t)\| \leq K$, $t \in J$.
 (ii) The system is uniformly stable iff there exists a constant $k > 0$ with $\|x(t, s)\| \leq K$, $0 \leq s \leq t < \infty$
 (iii) the above system is uniformly asymptotically stable iff if there exist constants $\alpha > 0$, $K > 0$ with $\|x(t, s)\| \leq Ke^{\alpha(t-s)}$, $0 \leq s \leq t < \infty$.

20. Prove that the time variant system $\dot{x} = Ax + Bu$, $x \in \mathbb{R}^m$, $u \in \mathbb{R}^n$ is controllable if and only if there exist the $m \times n$ matrices K_1, K_2 for which the matrix $I - e^{-(A+BK_2)T} e^{((A+BK_1)T)}$ is invertible.

21. Show that if $x(t)$ and $p(t)$ are the solutions of the canonical equations

$\begin{bmatrix} \dot{x}(t) \\ \dot{p}(t) \end{bmatrix} = \begin{bmatrix} A(t) & -S(t) \\ -Q(t) & -A^*(t) \end{bmatrix} \begin{bmatrix} x(t) \\ p(t) \end{bmatrix}$ and $p(t) = K(t)x(t)$ for all $t \in [0, T]$ and all $x(t)$, then $K(t)$ must satisfies the equation $\dot{K}(t) + K(t)A(t) + A^*(t)K(t) - K(t)S(t)K(t) + Q(t) = 0$.
