

(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2020 ONLY)

20PMS416

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS : JULY-2022
M.Sc.-MATHEMATICS
SEMESTER: IV

MAXIMUM MARKS: 70
TIME : 3 HOURS

OPERATOR THEORY

SECTION - A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

K1

- Let \mathbf{X} be a normed linear space & \mathbf{X}' be its dual space. Then $\dim \mathbf{X}$ _____ $\dim \mathbf{X}'$.
 - \leq
 - $=$
 - \geq
 - none
- \mathbf{l}^p and $\mathbf{L}^p[a, b]$ are _____
 - same
 - reflexive
 - non- reflexive
 - none
- $\mathbf{K}(\mathbf{X}, \mathbf{Y})$ is a subspace of _____
 - $\mathbf{B}(\mathbf{X}, \mathbf{Y})$
 - \emptyset
 - \mathbf{X}
 - none
- Let \mathbf{X} be a Banach space and $\mathbf{A} \in \mathbf{B}(\mathbf{X})$. If $\mathbf{R}(\mathbf{A})$ is _____ in \mathbf{X} , then $0 \in \sigma_{\text{app}}(\mathbf{A})$
 - closed
 - open
 - not closed
 - not open
- If \mathbf{A} is a linear operator from $\mathbf{A} \rightarrow \mathbf{X}$, then $\langle \mathbf{A}^* \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{y}, \mathbf{A} \mathbf{x} \rangle$. Is it true?

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. K2

- How are the elements of $\mathbf{NBV}[a, b]$ called?
- When is a normed linear space \mathbf{X} is reflexive?
- When the function $\mathbf{A}: \mathbf{l}^p \rightarrow \mathbf{l}^p$ defined by $(\mathbf{A}\mathbf{x})(i) = \lambda_i \mathbf{x}(i)$ is compact?
- What is the eigen space of \mathbf{A} corresponding to eigenvalue λ ?
- What is $\rho(\mathbf{A})$?

SECTION – B (5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. K3

- a) A normed linear space is separable if the dual is separable. Prove
(OR)
b) Can the dual of a non-separable normed linear space be homeomorphic to a separable space?
Justify your answer.
- a) Let \mathbf{X} and \mathbf{Y} be normed linear spaces. If $\mathbf{T}: \mathbf{X} \rightarrow \mathbf{Y}$ is a surjective linear isometry then
 $\mathbf{T}^*: \mathbf{Y}' \rightarrow \mathbf{X}'$ is a surjective linear isometry. Prove.
(OR)
b) Prove that a Banach Space is reflexive iff its dual is reflexive.

(CONTD.....2)

13.a) If $A \in K(X, Y)$ and $B \in K(Y, Z)$ and if one of them is compact, then $BA \in K(X, Z)$. Prove
(OR)
b) For every bound sequence (x_n) in $L^1[a, b]$, the sequence (kx_n) has a convergent sequence in $(C[a, b], \|\cdot\|_\infty)$. Prove

14.a) Prove that if X is a normed linear space and $A: X \rightarrow X$ is a linear operator, then
 $\sigma_{\text{eig}}(A) \subseteq \sigma_{\text{app}}(A)$. If X is finite dimensional, then $\sigma_{\text{eig}}(A) = \sigma_{\text{app}}(A)$
(OR)
b) Suppose X is a Banach space. $A \in B(X)$ and $\lambda \in K$. Then $\lambda \in \sigma(A)$ if and only if either
 $\lambda \in \sigma_{\text{app}}(A)$ or $R(A - \lambda I)$ is not dense in X . Prove

15.a) Let X, Y be inner product spaces. $A: X \rightarrow Y$ be a linear operator such that the adjoint A^* exists.
If $A \in B(X, Y)$, then $A^* \in B(Y, X)$ and $\|A^*\| = \|A\|$, $\|A^*A\| = \|A\|^2$. Prove
(OR)
b) Let X be a Hilbert space, $A \in B(X)$. Prove the following:
(i). A is normal if and only if $\|Ax\| = \|A^*x\| \forall x \in X$.
(ii). A is unitary if and only if A is surjective & $\|Ax\| = \|x\| \forall x \in X$. In particular, if A is unitary then $\|A\| = 1$.

SECTION - C

(4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS .

(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS (FROM Qn. No : 17 to 21) **(K4 & K5)**

16. Prove that the dual of $\mathbb{P}(n)$ is linearly isomorphic to $\mathbb{P}(n)$.

17. State and prove Fundamental theorem on Lebeque integral.

18. State and prove Schur's Lemma.

19. Let X and Y be normed linear spaces. Then Prove
(i). If $A \in K(X, Y)$, then $A' \in K(Y', X')$.
(ii). Converse of (i) holds only if Y is a banach space.

20. Let X be a banach space and $A \in B(X)$. Prove the following:
(i). The map $\lambda \rightarrow R(\lambda)$ is continuous on $\rho(A)$.
(ii). For every $\lambda \in \rho(A)$, $\lim_{\mu \rightarrow \lambda} \frac{R(\mu) - R(\lambda)}{\mu - \lambda} = [R(\lambda)]^2$.
(iii). For every $f \in (B(X))'$, the map $\phi_f: \rho(A) \rightarrow \mathbb{C}$ defined by $\phi_f(\lambda) = f(R(\lambda))$, $\lambda \in \rho(A)$ is differentiable in $\rho(A)$.

21. State and prove Closed range theorem.