

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2020 ONLY)**

20PMS4E5

REG.NO. :

**N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS : JULY- 2022
M.Sc.-MATHEMATICS
SEMESTER: IV**

**MAXIMUM MARKS: 70
TIME : 3 HOURS**

MATHEMATICAL METHODS

SECTION - A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

1. If $g(s) = \lambda \int_0^{\pi} (\sin s \sin 2t) g(t) dt$ has _____ eigen values.
a) one b) two c) three d) no
2. Initial value problem is reduced to _____ integral equation with given initial conditions.
a) Fredholm b) Volterra c) both d) Abel's
3. A functional $V[y(x)]$ reaches a maximum on a curve $y = y_0(x)$, with the difference $y(x) - y_0(x)$ as small, then the maximum is called _____.
a) strong b) weak c) strictly maximum d) strictly minimum
4. If the extremal C is included in the field of extremals then the condition can be replaced by _____.
a) Legendre condition b) Weiestrass condition c) Jacobi condition d) minimum condition
5. The equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = f(x, y)$ is known as _____.
a) Laplace equation b) Poisson equation c) Euler equation d) Jacobi equation

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES

(K2)

6. Write the Neumann series.
7. Write the Fredholm integral equation.
8. What is Ostrogradsky equation?
9. Define Weiestrass function.
10. Write the approximate solution of the Kantorovich's method.

SECTION - B (5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Solve the Volterra integral equation $g(s) = 1 + \int_0^s st g(t) dt$.
(OR)
b) Find the resolvent kernel for the integral equation $g(s) = f(s) + \lambda \int_{-1}^1 (st + s^2 t^2) g(t) dt$
12. a) Reduce the Initial value problem $y''(s) + \lambda y(s) = F(s)$ with the initial conditions $y(0) = 1, y'(0) = 0$ to a Volterra integral equation.
(OR)
b) Solve the Abel's Integral equation $f(s) = \int_0^s \frac{g(t)}{(s-t)^\alpha} dt, 0 < \alpha < 1$.

(CONT'D.....2)

13. a) State and prove the fundamental theorem of calculus of variation.

(OR)

b) Find the extremals for the functional $V[y(x)] = \int_{x_0}^{x_1} \frac{\sqrt{1+y'^2}}{x} dx$.

14. a) Is the Jacobi condition fulfilled for the extremal of the functional

$v[y(x)] = \int_0^a (y'^2 + y^2 + x^2) dx$, that passes through the points A(0,0) and B(a,0)?

(OR)

b) Test for an extremum for the functional

$$v = \int_0^a y'^3 dx, \quad y(0) = 0, y(a) = b, a > 0, b > 0$$

15. a) Find an approximate solution associated with the torsion of a cylinder or prism, to investigate the functional for an extremum

$$v[z((x,y))] = \iint [(\frac{\partial z}{\partial x} - y)^2 + (\frac{\partial z}{\partial y} + x)^2] dx dy.$$

(OR)

b) Find a continuous solution of the equation $\Delta z = -1$ in the domain D, which is an isosceles triangle bounded by the straight lines $y = \pm \frac{\sqrt{3}}{3}x$ and $x = b$ and the solution vanishes on the boundary of the domain.

SECTION - C

(4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS

**(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21)**

(K4 (Or) K5)

16. Solve the integral equation $g(s) = f(s) + \lambda \int_0^1 (1 - 3st) g(t) dt$.

17. Solve the integral equation $g(s) = (e^s - s) - \int_0^1 s(e^{st-1}) g(t) dt$ using approximation method.

18. From a boundary value problem $y''(s) + A(s)y'(s) + B(s)y(s) = F(s)$ with $y(a) = y_0$, $y(b) = y_1$ reduce a Fredholm type integral equation $y(s) = f(s) + \int k(s, t)y(t) dt$.

19. State and Prove Brachistrone problem.

20. Find the equation of geodesics on a surface on which the element of length of the curve is of the form $ds^2 = \{\varphi_1(x) + \varphi_2(y)\}(dx^2 + dy^2)$.

21. Using the Ritz method, find an approximate solution of the differential equation $y'' + x^2 y = x; y(0) = y(1) = 0$. Determine $y_2(x)$ and $y_3(x)$ and compare their values at the points $x = 0.25, x = 0.5$ and $x = 0.75$.