

(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2021 ONLY)

21PMS205

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS : JULY -2022

M.Sc.-MATHEMATICS
SEMESTER II

MAXIMUM MARKS: 70
TIME : 3 HOURS

LINEAR ALGEBRA

SECTION - A

(10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

- The characteristic value of the matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ _____.
 - 2
 - no values
 - 3
 - 1
- The unique expression for α as a sum of vectors in R and N is _____.
 - $\alpha = E\alpha + (\alpha - E\alpha)$
 - $\alpha = E\alpha - (\alpha - E\alpha)$
 - $\alpha = E\alpha + (\alpha + E\alpha)$
 - $\alpha = E(E\alpha) + \alpha$
- The identity operator has no cyclic vector, when _____.
 - $\dim V > 1$
 - $\dim V = 0$
 - $\dim V < 1$
 - $\dim V = 1$
- Every entry of A not on or immediately below the main diagonal is
 - 1
 - 2
 - 3
 - 0
- rank $f =$ _____.
 - $\dim V^+ + \dim V^-$
 - $\dim V^+ - \dim V^-$
 - $\dim V^+ + \dim V$
 - $\dim V + \dim V^-$

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES.

(K2)

- When do you say that the linear operator T is diagonalizable?
- Define nilpotent linear operator.
- Define the T -cyclic subspace generated by any vector.
- What are the conditions for the matrix N to be in normal form?
- When is a bilinear form f on vector spaces called non – degenerate?

SECTION – B

(5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

- Let T be a linear operator on a finite dimensional space V . Let c_1, \dots, c_k be the distinct characteristic values of T and let W_i be the null space of $(T - c_i I)$. Prove that the following are equivalent
 - T is diagonalizable.
 - The characteristic polynomial for T is $f = (x - c_1)^{d_1} \dots (x - c_k)^{d_k}$ and $\dim W_i = d_i$, $i = 1, \dots, k$.
 - $\dim W_1 + \dots + \dim W_k = \dim V$.

(OR)

(CONTD....2)

b) Let V be a finite dimensional vector space over the field F . Let T be a linear operator on V such that the minimal polynomial for T is a product of linear factors $p = (x - c_1)^{r_1} \dots (x - c_k)^{r_k}$, c_i in F . Let W be a proper ($W \neq V$) subspace of V which is invariant under T . Prove that there exist a vector α in V such that
 (i) α is not in W (ii) $(T - cI)\alpha$ is in W , for some characteristic value c of the operator T .

12.a) If $V = W_1 \oplus \dots \oplus W_k$, prove that there exist k linear operators E_1, \dots, E_k on V such that
 (i) each E_i is a projection ($E_i^2 = E_i$);
 (ii) $E_i E_j = 0$, if $i \neq j$;
 (iii) $I = E_1 + \dots + E_k$;
 (iv) the range of E_i is W_i
 Is the converse true? Justify

(OR)

b) Let T be a linear operator on the finite dimensional vector space V over the field F . Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials. Prove that there is a diagonalizable operator D on V and a nilpotent operator N on V such that (i) $T = D + N$ (ii) $DN = ND$, where the diagonalizable operator D and the Nilpotent operator N are uniquely determined by (i) and (ii) and each of them is a polynomial in T .

13.a) Let α is an non-zero vector in V and let p_α be the T – annihilator of α . Prove the following:
 (i) The degree of p_α is equal to the dimension of the cyclic subspace $Z(\alpha; T)$.
 (ii) If the degree of p_α is k , then the vectors $\{\alpha, T\alpha, T^2\alpha, \dots, T^{k-1}\alpha\}$ form a basis for $Z(\alpha; T)$.
 (iii) If U is the linear operator on $Z(\alpha; T)$ induced by T , then the minimal polynomial for U is p_α

(OR)

b) If F be a field and B is an $n \times n$ matrix over F , prove that B is similar over the field F to one and only one matrix, which is in rational form.

14.a) Let A be a $n \times n$ matrix with entries in the field F , and let p_1, \dots, p_r be the invariant factors for A . The prove that the matrix $xI - A$ is equivalent to the $n \times n$ diagonal matrix with diagonal entries $p_1, \dots, p_r, 1, 1, \dots, 1$

(OR)

b) If M and N are equivalent $m \times n$ matrices with entries in $F[x]$, then prove that $\delta_k(M) = \delta_k(N)$, $1 \leq k \leq \min(m, n)$.

15.a) Let f be a bilinear form on the finite dimensional vector space V . and L_f and R_f be the linear transformations from V into V^* defined by $(L_{fa})(\beta) = f(a, \beta) = (R_f\beta)(a)$. Prove that $(L_f) = \text{rank } (R_f)$

(OR)

b) Let V be a finite – dimensional vector space over a field of characteristic zero, and f be a symmetric bilinear form on V . Prove that there is an ordered basis for V in which f is represented by a diagonal matrix.

SECTION - C

(4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS

(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21) (K4 (Or) K5)

16. State and Prove the Primary Decomposition Theorem.
 17. State and Prove Cayley – Hamilton Theorem.

(CONTD....3)

18. Let T be a linear operator on the finite dimensional vector space V . If T is diagonalizable and if c_1, \dots, c_k are the distinct characteristic values of T , prove that there exist linear operators E_1, \dots, E_k on V such that (i) $T = c_1 E_1 + \dots + c_k E_k$; (ii) $I = E_1 + \dots + E_k$; (iii) $E_i E_j = 0$, if $i \neq j$; (iv) $E_i^2 = E_i$ (v) the range of E_i is the characteristic space for T associated with c_i . Prove the converse also.
19. State and Prove Cyclic Decomposition Theorem.
20. Let P be an $m \times m$ matrix with entries in the polynomial algebra $F[X]$. Prove that the following are equivalent
 - i) P is invertible.
 - ii) The determinant of P is a non-zero scalar polynomial.
 - iii) P is row equivalent to the $m \times m$ identity matrix.
 - iv) P is a product of elementary matrices.
21. Let V be an n -dimensional vector space over the field of real numbers and let f be a symmetric bilinear form on V which has rank r . Prove that there is an ordered basis $\{\beta_1, \beta_2, \dots, \beta_n\}$ for V in which the matrix of f is diagonal and such that $f(\beta_j, \beta_j) = \pm 1$, $j = 1, \dots, r$.
Prove further then, the number of basis vectors β_j , for which $(\beta_j, \beta_j) = 1$ is independent of the choice of basis.
