

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2022 ONLY)**

22PMS205

REG.NO. :

**N.G.M. COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS: MAY-2023**

**COURSE NAME: M.Sc.-MATHEMATICS
SEMESTER: II**

**MAXIMUM MARKS: 50
TIME: 3 HOURS**

LINEAR ALGEBRA

SECTION – A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS. (K1)
MULTIPLE CHOICE QUESTIONS.

1. Characteristics values are otherwise called _____ roots.
a) real b) complex c) latent d) imaginary
2. If V is a vector space, a _____ of V is a linear operator E on V such that $E^2 = E$
a) operator b) projections c) linear d) space
3. Let W be a proper T invariant subspace, then $W \cap Z(\alpha; T) =$ _____.
a) $\{4\}$ b) $\{0\}$ c) $\{2\}$ d) $\{1\}$
4. In Jordan form, N is a _____ linear operator on the finite dimensional space V .
a) Nilpotent b) normal c) adjoint d) self adjoint
5. The rank of the bilinear form is equal to the rank of the matrix of the form in any ordered _____.
a) zero b) scalar c) vector d) basis

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. (K2)

6. Define Minimal polynomial for T .
7. Define Nilpotent Operator N .
8. Define T annihilator of α .
9. What are considered as elementary row transformation ?
10. Define a Bilinear form.

SECTION – B (5 X 3 = 15 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)
11. a) Prove that the similar matrices have the same characteristic polynomial.

(OR)

- b) Let T be a linear operator in an n dimensional vector space V , then prove that the characteristics and minimal polynomial for T have the same roots, except for the multiplicities.
12. a) Let V be a finite –dimensional vector space. Let W_1, W_2, \dots, W_k be subspaces of V and let $W = W_1 + W_2 + \dots + W_k$. Show that the following are equivalent
 - i) W_1, W_2, \dots, W_k are independent
 - ii) For each j , $2 \leq j \leq k$ we have $W_i \cap (W_1 + W_2 + \dots + W_{i-1}) = \{0\}$
 - iii) If \mathcal{B}_1 is an ordered basis for W_i , $1 \leq i \leq k$ then the basis $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_n)$ is an ordered basis for W .

(OR)

(CONTD.....2)

- b) Let T be a linear operator on the finite dimensional vector space V over the field F . Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials. Prove that there is a diagnosable operator D on V and a Nilpotent Operator N on V such that
 (i) $T = D + N$ (ii) $DN = ND$. Prove that D and N are uniquely determined by (i) and (ii)
13. a) If U is a linear operator on the finite - dimensional space W , then U has a cyclic vector if and only if there is some ordered basis for W in which U is represented by the companion matrix of the minimal polynomial for U . Prove it.

(OR)

- b) Let F be a field and let B be an $n \times n$ matrix over F . Show that B is similar over the field F to one and only one matrix which is in rational form.

14. a) Find the characteristic polynomial of $A = \begin{bmatrix} 2 & 0 & 0 \\ a & 2 & 0 \\ b & c & -1 \end{bmatrix}$ and also find $(A-2I)(A+I)$

(OR)

- b) Let M and N be equivalent $m \times n$ matrices with entries in the polynomial algebra $F[X]$, prove that $\delta_k(M) = \delta_k(N)$, $1 \leq k \leq \min(m, n)$

15. a) Find all bilinear forms on the space F^2 , where F is a field.

(OR)

- b) Let V be a finite-dimensional vector space over a field of characteristic zero, and let f be a symmetric bilinear form on V . Prove that there is an ordered basis for V in which f is represented by a diagonal matrix.

SECTION – C **(5 X 5 = 25 MARKS)**

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.
 (K4 (Or) K5)

16. a) Find the characteristic polynomial for $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$ and also find the dimension of the space of characteristic vectors associated with the characteristic values?

(OR)

- b) State and prove Cayley-Hamilton theorem.

17. a) Let T be a linear operator on a vector space V , and W_1, W_2, \dots, W_R are subspaces of V and E_1, E_2, \dots, E_R are projections on V . Prove that a necessary and sufficient condition for each subspace W_i ($i = 1, 2, \dots, R$) to be invariant under T is that T commutes with each projection.

(OR)

- b) State and prove the primary Decomposition Theorem.

18. a) State and prove Cyclic Decomposition Theorem.

(OR)

- b) State and prove Generalized Cayley-Hamilton theorem.

19. a) Let M be a matrix in $F[x]^{m,n}$ which has some non-zero entry in its first column, and let p be the greatest common divisor of the entries in column 1 of M . Then M is row- equivalent to a matrix N which has $\begin{bmatrix} p \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ as its first column. Prove it.

(CONTD.....3)

(OR)

- b) If M is an $m \times n$ matrix with entries in the polynomial algebra $F[X]$, prove that M is equivalent to a matrix N which is in normal form.
- 20.a) Let f be a bilinear form on the finite dimensional vector space V . Let L_f and R_f be the linear transformation from V into V^* defined by $(L_{f\alpha})(\beta) = f(\alpha, \beta) = (R_{f\beta})(\alpha)$. Prove that $\text{rank}(L_f) = \text{rank}(R_f)$
- (OR)**
- b) Let V be an n -dimensional vector space over the field of real numbers, and let f be a symmetric bilinear form on V which has rank r . Then there is an ordered basis $\{\beta_1, \beta_2, \dots, \beta_n\}$ for V in which the matrix f is diagonal and such that $f(\beta_j, \beta_j) = \pm 1$, $j = 1, 2, \dots, r$. Furthermore, the number of basis vector β_j for which $f(\beta_j, \beta_j) = 1$, is independent of the choice of basis. Prove it.
