

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2022 ONLY)**

22UPS2A2

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS : MAY-2023

PART - III
ANCILLARY MATHEMATICS FOR PHYSICS - II
SECTION - A **(10 X 1 =10 MARKS)**

ANSWER THE FOLLOWING QUESTIONS: [K1]

- $L\{1\} = \dots$
 - $\frac{1}{s}$
 - $-\frac{1}{s}$
 - s
 - s^2
- $L^{-1}\left(\frac{1}{s^2 + a^2}\right) = \dots$
 - $\sin at$
 - $\frac{\sin at}{a}$
 - $\frac{\cos at}{a}$
 - $\cos at$
- If \vec{F} is solenoidal then $\nabla \cdot \vec{F} = \dots$
 - zero
 - $\nabla^2 c$
 - constant
 - one
- $\nabla X \nabla \varphi = \dots$
 - one
 - infinity
 - constant
 - zero
- A scalar function φ satisfying the condition $\nabla^2 \varphi = 0$ is
 - harmonic
 - differential
 - integral
 - discrete

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. [K2]

6. Define hyperbolic function.
7. Write the Laplace inverse formula for $L^{-1}\left(\frac{s}{s^2 - a^2}\right)$.
8. Define irrotational.
9. Define Line integral.
10. State Gauss divergence theorem.

SECTION -B **(5 X 3 = 15 MARKS)**

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. [K3]

11. a) If $\sin(A + iB) = x + iy$ prove that i) $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$, ii) $\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$.
(OR)

b) Find the Laplace transform $\sin^3 2t$.

12. a) Find the inverse transform of $\log\left(\frac{1+s}{s}\right)$.
(OR)

b) Find the inverse transform of $\log\left(\frac{1+s}{s}\right)$.
(CONTD.....2)

13. a) If $\varphi(x, y, z) = x^2y + y^2x + z^2$ find $\nabla\varphi$ at the point (1, 1, 1).

(OR)

b) Show that the vector $\vec{F} = 3y^4z^2\vec{i} + 4x^3z^2\vec{j} - 3x^2y^2\vec{k}$ is solenoidal.

14. a) If $\vec{F} = 3xy\vec{i} - y^2\vec{j}$, find $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve on the xy plane $y = 2x^2$ from (0, 0) to (1, 2).

(OR)

b) Evaluate $\iiint_V \vec{F} dv$ where $\vec{F} = 2xz\vec{i} - x\vec{j} + y^2\vec{k}$ and V is the volume of the region enclosed by the cylinder $x^2 + y^2 = a$ between the planes $z = 0, z = c$.

15. a) Using divergence theorem, evaluate $\int_S \vec{F} \cdot \vec{n} dS$ where $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ and S is the Surface of the cube bounded by the planes $x = 0, x = 2, y = 0, y = 2, z = 0$ and $z = 2$.

(OR)

b) Find the area of the ellipse $x = a \cos \theta, y = b \sin \theta$.

SECTION -C

(5X5 = 25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. K4 & K5

16. a) Expand $\cosh^8 \theta$ in terms of hyperbolic cosines of θ .

(OR)

[K4]

b) Find the Laplace transform of $\sin^2 t \cos^3 t$.

17. a) Using Laplace transform solve $\frac{d^2 y}{dt^2} + 5 \frac{dy}{dt} + 6y = e^{-t}$ given $y = 0, \frac{dy}{dt} = 1$ when $t = 0$.

(OR)

[K5]

b) Find the Laplace inverse of $\frac{2(s+1)}{(s^2 + 2s + 2)^2}$.

18. a) Show that $\vec{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is irrotational and solenoidal.

(OR)

[K4]

b) If $\vec{F} = xz^3\hat{i} - 2xyz\hat{j} + xz\hat{k}$ find $\text{div } \vec{F}$ and $\text{curl } \vec{F}$ at (1, 2, 0).

19. a) Find the work done in moving a particle once round the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1, z = 0$ under the field of force given by $\vec{F} = (2x - y + z)\vec{i} + (x + y - z^2)\vec{j} + (3x - 2y + 4z)\vec{k}$ is the field conservative?

(OR)

[K5]

b) Evaluate $\iint_S \vec{F} \cdot \vec{n} dS$ where $\vec{F} = 18z\vec{i} - 12\vec{j} + 3y\vec{k}$ and S is the part of the plane

$2x + 3y + 6z = 12$ which is located in the first quadrant.

20. a) Verify Green's theorem in the plane $\int_C (xy + y^2)dx + x^2dy$ where C is the chord curve of the region bounded by $y = x$ and $y = x^2$.

(OR)

[K4]

b) Compute $\int_C (xy - x^2)dx + x^2ydy$ over the triangle bounded by the lines $y = 0, x = 1, y = x$

and verify Green's theorem.