

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2022 ONLY)**

22UMS204

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS :MAY-2023

COURSE NAME: B.Sc.-MATHEMATICS

MAXIMUM MARKS: 50

SEMESTER: II

TIME : 3 HOURS

PART - III

ANALYTICAL GEOMETRY

SECTION – A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES.

(K2)

6. What is the pole of the line $lx + my + n = 0$ with respect to the parabola $Y^2=4ax$.
7. What is conic form?
8. Write the standard equation of the sphere.
9. Define the guiding curve of the cylinder.
10. Define a cylinder.

SECTION – B **(5 X 3 = 15 MARKS)**

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Find the equation of the circle passing through the points $(0, 1)$, $(2, 3)$, and $(-2, 5)$.
(OR)

b) Find the centre and eccentricity of the ellipse $9x^2 + 25y^2 - 18x - 100y - 116 = 0$.

12.a) Find the locus of the foot of the perpendiculars drawn from the pole to the tangents to the circle $r = 2a\cos\theta$
(OR)

b) Find the condition in order that the line $\frac{l}{r} = A \cos\theta + B \sin\theta$ may be a tangent to the conic $\frac{l}{r} = 1 + e \cos\theta$. **(CONTD.....2)**

13. a) Find the equation of the sphere whose centre is $(6, -1, 2)$ and which touches the plane $2x - y + 2z = 2$
(OR)
 b) Find the centre and radius of the circle of intersection of the plane $2x - 2y + z = 27$ and the sphere $x^2 + y^2 + z^2 = 225$.

14. a) Show that a homogeneous equation $f(x, y, z) = 0$, of degree n , represents a cone with its vertex at the origin O.
(OR)
 b) Find the equation of the cylinder which has the circle $x^2 + y^2 = a^2, z = 0$ as its guiding curve and has its generators parallel to the z axis.

15. a) Show that a second degree equation which represents a cone with its vertex at the origin, is a homogeneous equation.
(OR)
 b) Find the equation of the cylinder having the circle $x^2 + y^2 + z^2 = a^2, z = 0$ as the guiding curve and having its generators parallel to the line whose d. r.'s are λ, μ, ν .

SECTION – C **(5 X 5 = 25 MARKS)**

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.

(K4 (Or) K5)

16. a) Find the centre, eccentricity, foci and directrices of the hyperbola
 $9x^2 - 16y^2 + 72x - 32y - 16 = 0$
(OR)
 b) Find the locus of the point of intersection of two tangents to the parabola $y^2 = 4ax$ which make an angle α with one another.

17. a) Trace the conic $\frac{2}{r} = 1 + \cos \theta + \sin \theta$.
(OR)
 b) If the normal at α, β, γ on $\frac{l}{r} = 1 + \cos \theta$ meet in the point (ρ, ϕ) show that
 (1) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = 0$
 (2) $\alpha + \beta + \gamma = 2n\pi + 2\phi$

18. a) Find the equation of the sphere which touches the sphere
 $x^2 + y^2 + z^2 - x + 3y + 2z - 3 = 0$ at $(1, 1, -1)$ and passes through the origin.
(OR)
 b) A moving plane intersects the coordinate axes in A, B, C. If the plane always passes through a fixed point (α, β, γ) , find the locus of the centre of the sphere through $(0, 0, 0)$, A, B, C.

19. a) Find the equation of the right circular cylinder whose base radius is a and axis is

$$\frac{x-\alpha}{\lambda} = \frac{y-\beta}{\mu} = \frac{z-\gamma}{\nu}$$

(OR)
 b) Show that, if the quadric cone $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$ has three mutually perpendicular generators, then $a + b + c = 0$.

20. a) Obtain by homogenizing the equation of the cone having C as its guiding curve and the origin as its vertex.
(OR)
 b) Obtain the condition so that the general second degree equation $f(x, y, z) = 0$, that is, $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy + 2ux + 2vy + 2wz + e = 0$ may represent a cone.
