

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2022 ONLY)**

22UMS203

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS : MAY-2023

COURSE NAME: B.Sc.-MATHEMATICS

MAXIMUM MARKS: 50

SEMESTER: II

TIME : 3 HOURS

PART - III

TRIGONOMETRY, VECTOR CALCULUS AND FOURIER SERIES

SECTION – A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

1. $\sin \theta = \underline{\hspace{2cm}}$

a) $\frac{e^{i\theta} - e^{-i\theta}}{2i}$ b) $\frac{e^{i\theta} + e^{-i\theta}}{2i}$ c) $\frac{e^{i\theta} - e^{-i\theta}}{2}$ d) $\frac{e^{i\theta} - e^{-i\theta}}{2i^2}$

2. A sequence in which $a_{n+1} \geq a_n$ for all values of n is called

a) Cauchy's sequence b) Monotonic decreasing sequence

c) Monotonic increasing sequence d) None of the above

3. $\int_0^\pi \cos mx \, dx = \underline{\hspace{2cm}}$ if m is an integer.

a) 0 b) ∞ c) 1 d) 2

4. $\nabla f(r) \times \vec{r} = \underline{\hspace{2cm}}.$

a) 1 b) 2 c) 0 d) -1

5. $\nabla^2 \phi = 0$ is called $\underline{\hspace{2cm}}.$

a) logarithmic b) exponential c) hyperbolic d) harmonic

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES

(K2)

6. Find the Value of $x^n + \frac{1}{x^n}$ if $x = \cos\theta + i\sin\theta$
7. Write an example for oscillate sequence.
8. Define odd function.
9. Define Solenoidal vector.
10. State Green's theorem.

SECTION – B

(5 X 3 = 15 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Express $\cos 8\theta$ in terms of $\sin \theta$

(OR)

b) If $\cosh u = \sec \theta$, show that $u = \log \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ (CONTD.....2)

12. a) If $u_1 + u_2 + \dots + u_n + \dots$ is convergent, then $\lim_{n \rightarrow \infty} u_n = 0$.

(OR)

b) Show that the series $\sum \frac{\{(n+1)r\}^n}{n^{n+1}}$ is convergent if $r < 1$ and divergent if $r \geq 1$.

13. a) Express $f(x) = \frac{1}{2}(\pi - x)$ as a Fourier series in the interval $0 \leq x \leq 2\pi$

(OR)

b) Express $f(x) = x, -\pi < x < \pi$ as a Fourier series with period 2π .

14. a) Find ϕ if $\nabla\phi = (y + \sin z)\vec{i} + x\vec{j} + x \cos z \vec{k}$.

(OR)

b) Prove that $\nabla \times (\nabla \times \vec{F}) = \nabla(\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$ where \vec{F} is a vector point function.

15. a) If $\vec{F} = 3xy\vec{i} - y^2\vec{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve on the xy plane $y = 2x^2$ from $(0, 0)$ to $(1, 2)$.

(OR)

b) For the vector function $\vec{F} = 2xy\vec{i} + (x^2 + 2yz)\vec{j} + (y^2 + 1)\vec{k}$, determine the value of the integral $\int_C \vec{F} \cdot d\vec{r}$ around the unit circle with centre at the origin in the xy plane.

SECTION – C

(5 X 5 = 25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS.

(K4 (Or) K5)

16. a) Expand $\sin^3 \theta \cos^5 \theta$ in series of sines of multiples of θ .

(OR)

b) If $\cosh(a + ib) \cos(c + id) = 1$, prove that

$$(1) \cos b \cos c \cosh a \cosh d + \sin b \sin c \sinh a \sinh d = 1$$

$$(2) \tanh a \tan b = \tanh d \tan c$$

17. a) Prove that the series $1 + \frac{1}{2} \cdot \frac{a}{b} + \frac{1.3}{2.4} \frac{a(a+1)}{b(b+1)} + \frac{1.3.5}{2.4.6} \frac{a(a+1)(a+2)}{b(b+1)(b+2)} + \dots$ is convergent if $a > 0$, $b > 0$ and $b > a + \frac{1}{2}$

(OR)

b) Settle the range of values of x for which the following series converge:

$$(1) \sum \frac{x^n}{1+x^n}$$

$$(2) \sum \frac{x^n}{1+n^2 x^{2n}}$$

18. a) Find in the range $-\pi$ to π , Fourier series for $\begin{cases} y = 1 + x & 0 < x < \pi \\ y = -1 + x & -\pi < x < 0 \end{cases}$

(OR)

b) Show that $x^2 = \frac{\pi^2}{3} + 4 \sum (-1)^n \frac{\cos nx}{n^2}$ in the interval $-\pi \leq x \leq \pi$.

(CONTD.....3)

19. a)A particle moves along the curve $x = t^3 + 1, y = t^2, z = 2t + 5$ where t is the time. Find the components of its velocity and acceleration at $t = 1$ in the direction $\vec{i} + \vec{j} + 3\vec{k}$.

(OR)

b)A field \vec{F} is of the form $\vec{F} = (6xy + z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$. Show that \vec{F} is conservative field and find a function ϕ such that $\vec{F} = \nabla\phi$.

20. a)Verify Gauss's theorem for $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$ taken over the region bounded by the planes $x = 0, x = a, y = 0, y = a, z = 0, z = a$.

(OR)

b)If $\vec{F} = (3x^2 + 6y)\vec{i} - 14yz\vec{j} + 20xz^2\vec{k}$, evaluate $\int \vec{F} \cdot d\vec{r}$ from $(0, 0, 0)$ to $(1, 0, 0)$ along the following paths

- a) $x = t, y = t^2, z = t^3$
- b) the straight lines from $(0, 0, 0)$ to $(1, 0, 0)$ then to $(1, 1, 0)$ and then to $(1, 1, 1)$.
- c) the straight line joining $(0, 0, 0)$ to $(1, 1, 1)$.

ETHICAL PAPER