

(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2022 ONLY)

22UCY2A2

REG.NO.:

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS : MAY-2023
COURSE NAME: B.Sc.-CHEMISTRY
SEMESTER: II

MAXIMUM MARKS: 50
TIME : 3 HOURS

PART - III
ANCILLARY MATHEMATICS FOR CHEMISTRY - II
SECTION - A **(10 X 1 =10 MARKS)**

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS. [K1]

1. $L\{1\} = \text{-----}$
 - a) $\frac{1}{s}$
 - b) $-\frac{1}{s}$
 - c) s
 - d) s^2
2. $L^{-1}\left(\frac{1}{s^2 + a^2}\right) = \text{-----}$
 - a) $\sin at$
 - b) $\frac{\sin at}{a}$
 - c) $\frac{\cos at}{a}$
 - d) $\cos at$
3. If \vec{F} is solenoidal then $\nabla \cdot \vec{F} = \text{-----}$
 - a) zero
 - b) $\nabla^2 c$
 - c) constant
 - d) one
4. $\nabla \times \nabla \varphi = \text{-----}$
 - a) one
 - b) infinity
 - c) constant
 - d) zero
5. A scalar function φ satisfying the condition $\nabla^2 \varphi = 0$ is called the ----- function.
 - a) harmonic
 - b) differential
 - c) integral
 - d) Green's

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. [K2]

6. Define hyperbolic function.
7. Write the Laplace inverse formula for $L^{-1}\left(\frac{s}{s^2 - a^2}\right)$.
8. Define irrotational.
9. Define Line integral.
10. State Gauss divergence theorem.

SECTION - B **(5 X 3 = 15 MARKS)**

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. [K3]

11. a) If $\sin(\theta + i\varphi) = \tan \alpha + i \sec \alpha$ prove that $\cos 2\theta \cosh 2\phi = 3$.

(OR)

b) Find the Laplace transform of $\frac{\sin^2 t}{t}$.
12. a) Find the Laplace inverse of $\frac{10}{(s+2)^6}$.

(OR)

b) Find the Laplace inverse of $\frac{2(s+1)}{(s^2 + 2s + 2)^2}$.

(CONTD.....2)

13. a) If $\varphi(x, y, z) = x^2 y + y^2 x + z^2$ find $\nabla \varphi$ at the point (1, 1, 1).

(OR)

b) Prove that $\operatorname{div} \vec{r} = 3$ and $\operatorname{curl} \vec{r} = 0$ where \vec{r} is the position vector of the point (x, y, z).

14. a) If $\vec{F} = 3xy \vec{i} - y^2 \vec{j}$, find $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve on the xy plane $y = 2x^2$ from (0, 0) to (1, 2)

(OR)

b) Evaluate $\iiint_V \vec{F} dv$ where $\vec{F} = 2xz \vec{i} - x \vec{j} + y^2 \vec{k}$ and V is the volume of the region enclosed by the cylinder $x^2 + y^2 = a$ between the planes $z = 0, z = c$.

15. a) Using divergence theorem, evaluate $\int_S \vec{F} \cdot \vec{n} dS$ where $\vec{F} = 4xz \vec{i} - y^2 \vec{j} + yz \vec{k}$ and S is the

Surface of the cube bounded by the planes $x = 0, x = 2, y = 0, y = 2, z = 0$ and $z = 2$.

(OR)

b) Find the area of the ellipse $x = a \cos \theta, y = b \sin \theta$.

SECTION -C

(5X5 = 25 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. K4 & K5

16. a) Expand $\cosh^8 \theta$ in terms of hyperbolic cosines of θ .

(OR)

[K4]

b) Find the Laplace transform of the $\sin^3 2t$.

17. a) Using Laplace transform solve $\frac{d^2 y}{dt^2} + 5 \frac{dy}{dt} + 6y = e^{-t}$ given $y = 0, \frac{dy}{dt} = 1$ when $t = 0$.

(OR)

[K5]

b) Solve $\frac{d^2 y}{dt^2} - 4 \frac{dy}{dt} + 5y = 4e^{3t}$ given $y(0) = 2, y'(0) = 7$.

18. a) Show that $\vec{F} = (y^2 - z^2 + 3yz - 2x) \hat{i} + (3xz + 2xy) \hat{j} + (3xy - 2xz + 2z) \hat{k}$ is irrotational and solenoidal.

(OR)

[K4]

b) If \vec{a} is a constant vector prove that $\operatorname{div} [\vec{a} \times \vec{r}] = 0$.

19. a) Find the work done in moving a particle once round the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1, z = 0$ under the field of force given by $\vec{F} = (2x - y + z) \vec{i} + (x + y - z^2) \vec{j} + (3x - 2y + 4z) \vec{k}$ is the field conservative?

(OR)

[K5]

b) Evaluate $\iint_S \vec{F} \cdot \vec{n} dS$ where $\vec{F} = 18z \vec{i} - 12 \vec{j} + 3y \vec{k}$ and S is the part of the plane $2x + 3y + 6z = 12$ which is located in the first quadrant.

20. a) Verify Green's theorem in the plane $\int_C (xy + y^2) dx + x^2 dy$ where C is the chord curve of the region bounded by $y = x$ and $y = x^2$. (OR) [K4]

b) Compute $\int_C (xy - x^2) dx + x^2 y dy$ over the triangle bounded by the lines $y = 0, x = 1, y = x$ and verify Green's theorem.