

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2020 ONLY)**

20UMS615 / 20UMA615

REG.NO. : _____

**N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI
END-OF-SEMESTER EXAMINATIONS :MAY - 2023**

COURSE NAME: B.Sc.-MATHEMATICS **MAXIMUM MARKS: 70**
SEMESTER: VI **TIME : 3 HOURS**

PART – III

COMPLEX ANALYSIS

SECTION - A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

1. A function that satisfies Laplace Equation is called as _____
 a. holomorphic b. harmonic c. conjugate d. Riemann
2. Every Cauchy sequence is _____
 a. connected b. convergent c. divergent d. alternating
3. The smallest positive period of e^{iz} is denoted by _____
 a. π b. 2π c. 3π d. $\pi/2$
4. If the closed curve γ lies inside a circle then the value of $n(\gamma, a)$ for all the points outside the circle is _____
 a. 1 b. -1 c. ∞ d. 0
5. If $f(z) = z^2 \sin z$ then the zero of order for $f(z)$ is _____.
 a. 2 b. 3 c. 4 d. 0.

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES.

(K2)

6. Write the Cauchy-Riemann differential equation?
7. When is a sequence said to be uniformly convergent?
8. What is the expansion of $\log(z_1 z_2)$?
9. State the condition for the function f to be exact differentiable.
10. Given an example for a simple pole.

SECTION – B

(5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) If $g(z)$ and $f(z)$ are analytic functions show that $g(f(z))$ is also analytic.
 (OR)
 b) Show that if all zeros of a polynomial $P(z)$ lie in a half plane, then all zeros of the derivative $P'(z)$ lie in the same half plane.

(CONTD.....2)

12.a) Discuss the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ for real values of x
(OR)

b) Determine the radius of the convergence of the power series $\sum n^p z^n$

13.a) Find the values of $\tan(1+i)$
(OR)
b) Express $\arctan w$ in terms of the logarithm

14. a) If $f(z)$ is analytic in an open disc Δ then $\int f(z) dz = 0$ for every curve γ in Δ .
(OR)

b) Compute the value of $\int \frac{dz}{z^2-1}$ for the positive sense of the circle $|z| = 2$.

15. a) Show that a non-constant analytic function maps open sets to open sets
(OR)
b) Show that if $f(z)$ is analytic and non-constant in a region Ω then its absolute value $|f(z)|$ has no maximum value in Ω

SECTION - C **(4X10= 40 MARKS)**

ANSWER ANY FOUR OUT OF SIX QUESTIONS

**(16thQUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21) **(K4 (Or) K5)****

16. Check whether the following functions are differentiable

- (i) $f(z) = e^x (\cos y - i \sin y)$
- (ii) $f(z) = z^3$

17. Verify Cauchy –Riemann’s equation for the functions z^2 and z^3 .

18. Prove the Abel’s limit theorem with suitable arguments.

19. Show that an analytic function in a region Ω whose derivative vanishes identically must reduce to a constant.

20. Substantiate that if the function $f(z)$ is analytic then the value of the integral $f(z)$ over ∂R is zero.

21. State and prove the Taylor’s theorem.
