

**(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2020 ONLY)**

20UMS613 / 20UMA613

REG.NO. :

N.G.M.COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS : MAY - 2023

COURSE NAME: B.Sc.-MATHEMATICS

MAXIMUM MARKS: 70

SEMESTER: VI

TIME : 3 HOURS

**PART - III
LINEAR ALGEBRA**

SECTION - A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS.

(K1)

1. An elementary matrix is _____
a. an identity matrix b. row echelon matrix c. both a and b d. invertible
2. If V be a vector space over F , then any subset S of V containing the zero vector is _____.
a. linearly independent b. empty c. linearly dependent d. finite
3. If T is a linear transformation from V onto W then T is _____
a. invertible b. singular c. non-singular d. both a and b
4. If W_1 and W_2 are the subspaces of a finite dimensional vector space V then _____
a. $(W_1 + W_2)^0 = W_1^0 + W_2^0$ b. $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$
c. $(W_1 - W_2)^0 = W_1^0 - W_2^0$ d. $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$
5. If T^t is the transpose of the linear transformation of T then _____
a. $(T^t g)(\alpha) = g(T\alpha)$ b. $(T^t g)(\alpha) = g(T)$ c. $(T^t g)(\alpha) = g(\alpha T)$ d. $(T^t g)(\alpha) = \alpha(Tg)$

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES

(K2)

6. Give an example for an elementary matrix.
7. Define Symmetric matrix.
8. Is $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by $T(a,b) = (2a-3b, a+4b)$ a linear transformation?
9. Define dual space of a vector space.
10. What is the nature of hyperspace of a vector space?

SECTION - B (5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Let A and B be $n \times n$ matrices over F . Show that if A is invertible so is A^{-1} and $(A^{-1})^{-1} = A$.

(OR)

- b) Show that if A is a $n \times n$ matrix, then A is invertible and A is a product of elementary matrices.

(CONTD.....2)

12.a) Prove that if A is a $m \times n$ matrix over F and B, C are $n \times p$ matrices over F , then
 $A(dB+C) = d(AB) + AC$ for each scalar d in F
(OR)

b) Show that the intersection of any collection of subspaces of a vector space V is a subspace of V

13. a) Prove that the inverse of the invertible linear transformation T from the vector space W onto V is also a linear transformation.
(OR)

b) Show that a linear transformation T from V into W is non-singular iff T carries each linearly independent subset of V onto a linearly independent subset of W

14. a) Let W be a subspace of R^5 which is spanned by the vectors
 $\alpha_1 = (2, -2, 3, 4, -1), \alpha_2 = (-1, 1, 2, 5, 2), \alpha_3 = (0, 0, -1, -2, 3), \alpha_4 = (1, -1, 2, 3, 0)$. Determine the annihilator of W .
(OR)

b) If f is a linear functional on R^3 and if $\alpha_1 = (1, 0, 1), \alpha_2 = (0, 1, -2), \alpha_3 = (-1, -1, 0)$, find $f(\alpha)$ where $\alpha = (a, b, c)$ and given $f(\alpha_1) = 1, f(\alpha_2) = -1$ and $f(\alpha_3) = 3$

15. a) Show that f in V^* is a mapping $\alpha \rightarrow L_\alpha$ is an isomorphism of V onto V^{**} , where V is a finite dimensional vector space over the field F and each vector α in V is defined as
 $L_\alpha(f) = f(\alpha)$
(OR)

b) Prove that each basis for V^* is the dual of some basis for V , where V is a finite dimensional vector space over the field F .

SECTION - C **(4X10= 40 MARKS)**

ANSWER ANY FOUR OUT OF SIX QUESTIONS

**(16thQUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21) (K4 (Or) K5)**

16. Consider a system of equations
 $x_1 - x_2 + 2x_3 = 1; 2x_1 + 2x_3 = 1; x_1 - 3x_2 + 4x_3 = 2$. Does this system have a solution?
If so, describe explicitly all solutions

17. Check whether the given matrix $\begin{bmatrix} 2 & 5 & -1 \\ 4 & -1 & 2 \\ 6 & 4 & 1 \end{bmatrix}$ is invertible

18. Prove that if W_1 and W_2 are finite dimensional subspaces of a vector space V then $W_1 + W_2$ is finite dimensional and $\dim W_1 + \dim W_2 = \dim (W_1 \cap W_2) + \dim (W_1 + W_2)$

19. Show that every n -dimensional vector space over the field F is isomorphic to the space F^n

20. Prove that $\dim W + \dim W^0 = \dim V$, where V is a finite dimensional vector space over the Field F and W is the subspace of V

21. Show that if S is any subset of a finite dimensional vector space V , then $(S^0)^0$ is the subspace spanned by S