

(FOR THE CANDIDATES ADMITTED
DURING THE ACADEMIC YEAR 2020 ONLY)

20UMS6E3 / 20UMA6E3

REG.NO. :

N.G.M. COLLEGE (AUTONOMOUS) : POLLACHI

END-OF-SEMESTER EXAMINATIONS: MAY - 2023

COURSE NAME: B.Sc.-MATHEMATICS

MAXIMUM MARKS: 70

SEMESTER: VI

TIME : 3 HOURS

PART - III

DISCRETE MATHEMATICS

SECTION - A (10 X 1 = 10 MARKS)

ANSWER THE FOLLOWING QUESTIONS.

MULTIPLE CHOICE QUESTIONS. (K1)

1. The order of the recurrence relation $a_n = -2a_{n-1}$ is _____
a) 0 b) 2 c) 3 d) 1
2. The greatest and least elements in a posets are _____.
a) 0 and 1 b) 0 and 2 c) 0 and 3 d) 3 and 4
3. A relation R said to be an partial ordering on A , if R is reflexive, antisymmetric and _____.
a) poset b) transitive c) partial d) symmetric
4. A vertex said to be a pendent vertex or an end vertex if its degree is _____.
a) 2 b) 3 c) 1 d) 0
5. An alphabet is a non-empty finite set Σ of _____.
a) letters b) symbols c) words d) strings

ANSWER THE FOLLOWING IN ONE (OR) TWO SENTENCES. (K2)

6. A recurrence relation is also called What equation?
7. What are the two possible states of an electric circuit?
8. Which special types are Boolean algebras?
9. Define a path.
10. What are the two types of Automata?

SECTION - B (5 X 4 = 20 MARKS)

ANSWER EITHER (a) OR (b) IN EACH OF THE FOLLOWING QUESTIONS. (K3)

11. a) Solve the recurrence relation $a_{n+2} - 3a_{n+1} + 2a_n = 0$
(OR)
b) Find the particular solution of the recurrence relation $a_{n+2} - 3a_{n+1} + 2a_n = 1$
12. a) Prove that the given statement is a tautology $(p \rightarrow q) \leftrightarrow (\neg p \vee q)$
(OR)
b) Show that $R \rightarrow S$ can be derived from the premises.
 $P \rightarrow (Q \rightarrow S)$, $\neg R \vee P$ and Q

(CONTD.....2)

13. a) Prove that every chain is lattice.

(OR)

b) In a Boolean Algebra L, prove the De Morgan law's

14.a) If a simple Graph G with n vertices has more than $\frac{1}{2}(n-1)(n-2)$ edges, then prove that G is Connected.

(OR)

b) Explain the Types of Graph (Any Four).

15. a) Explain the Types of Grammars

(OR)

b) Explain Deterministic Finite State Automaton (DFA)

SECTION - C

(4 X 10 = 40 MARKS)

ANSWER ANY FOUR OUT OF SIX QUESTIONS

**(16th QUESTION IS COMPULSORY AND ANSWER ANY THREE QUESTIONS
(FROM Qn. No : 17 to 21). (K4 (Or) K5)**

16. Design a finite state machine M where the input set is {0,1,2} and output set contains digits which are modulo3 sum of the digits in the input sequence.
17. Solve the recurrence relation $a_n - 2a_{n-1} - 3a_{n-2} = 0$, $n \geq 2$ by the generating function method with initial conditions $a_0 = 3$, $a_1 = 1$.
18. Obtain the PDNF without using truth table for (i) $P \leftrightarrow Q$ ii) $\neg P \vee Q$
19. Let f be an (order) isomorphism from a poset (L, \leq) on to a poset (M, \leq') . If L is a lattice, then prove that M is also a lattice and f is a lattice isomorphism.
20. The connected Graph G has a Hamiltonian circuit if for any two vertices u and v are not adjacent, then prove that $\deg(u) + \deg(v) \geq n$, where n is the number of vertices.
21. Explain the properties of Concatenation.
